如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,E是SA上一點(diǎn),試探求點(diǎn)E的位置,使SC∥平面EBD,并證明.

答:點(diǎn)E的位置是棱SA的中點(diǎn).
證明:取SA的中點(diǎn)E,連接EB,ED,AC,
設(shè)AC與BD的交點(diǎn)為O,連接EO.
∵四邊形ABCD是平行四邊形,
∴點(diǎn)O是AC的中點(diǎn).
又E是SA的中點(diǎn),∴OE是△SAC的中位線.
∴OE∥SC.
∵SC?平面EBD,OE?平面EBD,
∴SC∥平面EBD.
故E的位置為棱SA的中點(diǎn).
分析:欲證SC∥平面EBD,根據(jù)直線與平面平行的判定定理可知只需證SC與平面EBD內(nèi)一直線平行,取SA的中點(diǎn)E,連接EB,ED,AC,設(shè)AC與BD的交點(diǎn)為O,連接EO.根據(jù)中位線可知OE∥SC,而SC?平面EBD,OE?平面EBD,滿足定理所需條件.
點(diǎn)評:本題主要考查了直線與平面平行的判定,應(yīng)熟練記憶直線與平面平行的判定定理,屬于探索性問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
3
,點(diǎn)E、G分別在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)證明平面BG∥平面SDE;
(2)求面SAD與面SBC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),AD=2,AB=1.SP與平面ABCD所成角為
π4
. 
(1)求證:平面SPD⊥平面SAP;
(2)求三棱錐S-APD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點(diǎn),且SE=2EC,SA=6,AB=2.
(1)求證:平面EBD⊥平面SAC;
(2)求三棱錐E-BCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
(1)求證:四邊形ABCD是直角梯形;
(2)求異面直線SB與CD所成角的大;
(3)求直線AC與平面SAB所成角的大。

查看答案和解析>>

同步練習(xí)冊答案