【題目】心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時(shí)間相關(guān),教學(xué)開始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:f(x)=
(Ⅰ)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
(Ⅱ)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(Ⅲ)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

【答案】解:(Ⅰ)由于f(x)= ,
由于f(5)=53.5,f(20)=47,則f(5)>f(20)
則開講后第5min比開講后第20min,學(xué)生的接受能力更強(qiáng)一些;
(Ⅱ)當(dāng)0<x≤10時(shí),f(x)=﹣0.1(x﹣13)2+59.9,
則當(dāng)x=10時(shí),f(x)min=f(10)=59,
當(dāng)x>16時(shí),f(x)<﹣3×16+109=59,
故開講后10min(包括10分鐘)學(xué)生的接受能力最強(qiáng),能維持6 min.
(Ⅲ)由 得6<x≤10;
得16<x
則t=(10﹣6)+6+( ﹣6)= <13.
答:老師不能在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念
【解析】第一小題比較5分鐘和20分鐘學(xué)生的接受能力何時(shí)強(qiáng),方法是把x=5代入第一段函數(shù)中,而x=20要代入到第二段函數(shù)中,比較大小即可.不同的自變量代入相應(yīng)的解析式才能符合要求;
第二小題求學(xué)生的接受能力最強(qiáng)其實(shí)就是要求分段函數(shù)的最大值,方法是分別求出各段的最大值取其最大即可;
第三小題考查分段函數(shù)圖象和增減性,令f(x)≥55,分別解出0<x≤10時(shí),x>16時(shí),x的范圍,再求區(qū)間的長(zhǎng)度,再求和與13min比較即可得到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )=
(1)求實(shí)數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的函數(shù)f(x)= (x)+bf(x)+c=0恰有5個(gè)不同的實(shí)數(shù)解x1 , x2 , x3 , x4 , x5 , 則f(x1+x2+x2+x4+x5)等于 (
A.0
B.21g2
C.31g2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=a 有最大值,則不等式loga(x2﹣5x+7)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x()與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+1滿足f(1+x)=f(1﹣x),
(1)求函數(shù)f(x)的解析式;
(2)判斷g(x)在[1,2]上的單調(diào)性并用定義證明你的結(jié)論;
(3)求g(x)在[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分類變量X和Y的列聯(lián)表如下:

y1

y2

總計(jì)

x1

a

b

a+b

x2

c

d

c+d

總計(jì)

a+c

b+d

a+b+c+d

則下列說法中正確的是(
A.ad-bc越小,說明X與Y關(guān)系越弱
B.ad-bc越大,說明X與Y關(guān)系越強(qiáng)
C.(ad-bc)2越大,說明X與Y關(guān)系越強(qiáng)
D.(ad-bc)2越接近于0,說明X與Y關(guān)系越強(qiáng)

查看答案和解析>>

同步練習(xí)冊(cè)答案