【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的數(shù)據(jù)如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數(shù)f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向左平移π個(gè)單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,要增長到原來的x倍,需經(jīng)過y年,則函數(shù)y=f(x)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線,與,各有一個(gè)交點(diǎn),當(dāng)時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng),這兩個(gè)交點(diǎn)重合.
(1)分別說明,是什么曲線,并求出與的值;
(2)設(shè)當(dāng)時(shí),與,的交點(diǎn)分別為,當(dāng),與,的交點(diǎn)分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機(jī)器,在一個(gè)月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機(jī)器臺數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ( )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn), 為, 的中點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),且,求直線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令,討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實(shí)數(shù)x1,x2滿足證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)四川省民政廳報(bào)告,2013年6月29日以來,四川省中東部出現(xiàn)強(qiáng)降雨天氣過程,局地出現(xiàn)大暴雨.暴雨洪澇災(zāi)害已造成遂寧、德陽、綿陽等12市34縣(市、區(qū))244萬人受災(zāi),共造成直接經(jīng)濟(jì)損失85502.41萬元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災(zāi)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).
(1)若先從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行調(diào)查,求這2戶不在同一小組的概率;(2)洪災(zāi)過后小區(qū)居委會(huì)號召小區(qū)居民為洪災(zāi)重災(zāi)區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)理】已知函數(shù)為自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)關(guān)于的不等式在上恒成立,求實(shí)數(shù)的值;
(3)關(guān)于的方程有兩個(gè)實(shí)根,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com