【題目】如圖,在中,,,,E,F分別為,的中點(diǎn),是由繞直線旋轉(zhuǎn)得到,連結(jié),,.

1)證明:平面;

2)若與平面所成的角為60°,求二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)要證平面,則證;證由平面幾何知識可得,證,只需證,即證平面,利用線面垂直判定可得.

2)建立空間直角坐標(biāo)系,根據(jù)與平面所成的角為60°,可知為等邊三角形,分別計(jì)算平面、平面的一個法向量,然后根據(jù)向量的夾角公式,可得結(jié)果.

解法一:

1)因?yàn)?/span>沿旋轉(zhuǎn)得到,且E中點(diǎn),

所以.所以

又因?yàn)?/span>F的中點(diǎn),所以

,所以

從而,又,所以平面,

平面,又平面,所以,

,所以平面

2)由(1)得平面,因?yàn)?/span>平面,

所以平面平面

過點(diǎn)P,交M

又平面平面,故平面,

所以與平面所成的角,

所以,

,所以為等邊三角形,

M中點(diǎn),由平面,

分別以,x,y軸的正方向,

建立如圖所示的空間直角坐標(biāo)系,

,,,

,,

易得平面的一個法向量為,

設(shè)為平面的一個法向量,則:

,即,

,得,

又因?yàn)槎娼?/span>的大小為鈍角,

故二面角的余弦值為

解法二:

1)因?yàn)?/span>沿旋轉(zhuǎn)得到,所以,

又因?yàn)?/span>E的中點(diǎn),所以.

所以,即,

同理,,得

,所以平面

2)由(1)得,又,

所以平面,又因?yàn)?/span>平面,

所以平面平面.

過點(diǎn)P,垂足為M

因?yàn)槠矫?/span>平面,所以平面,

所以與平面所成的角,所以,

因?yàn)?/span>,所以為等邊三角形,所以M中點(diǎn),

的中點(diǎn)N,連接,所以,所以平面,

分別以,x,yz軸的正方向,

建立如圖所示的空間直角坐標(biāo)系,

,,,,

,

易得平面的一個法向量為,

,

設(shè)為平面的一個法向量,則:

,即,

,得,

又因?yàn)槎娼?/span>的大小為鈍角,

故二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,該數(shù)列后項(xiàng), …..中的最小項(xiàng)為,.

1)對于數(shù)列:3,4,7,1,求出相應(yīng)的,;

2是數(shù)列的前項(xiàng)和,若對任意,有,其中,

①設(shè),判斷數(shù)列是否為等比數(shù)列;

②若數(shù)列對應(yīng)的滿足:對任意的正整數(shù)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)2020年全面建設(shè)小康社會,某地進(jìn)行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學(xué)研判,準(zhǔn)備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設(shè)備可以獨(dú)立生產(chǎn)該部件.如圖是從甲設(shè)備生產(chǎn)的部件中隨機(jī)抽取400件,對其核心部件的尺寸x,進(jìn)行統(tǒng)計(jì)整理的頻率分布直方圖.

根據(jù)行業(yè)質(zhì)量標(biāo)準(zhǔn)規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級品,1<|x12|≤2為二級品,|x12|>2為三級品.

(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學(xué)期望;

(Ⅱ)將甲設(shè)備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進(jìn)行檢驗(yàn).已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗(yàn)費(fèi)用為50.檢驗(yàn)規(guī)定:若檢驗(yàn)出三級品需更換為一級或二級品;若不檢驗(yàn),讓三級品進(jìn)入買家,廠家需向買家每件支付200元補(bǔ)償.現(xiàn)從一箱產(chǎn)品中隨機(jī)抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級品.若將甲設(shè)備的樣本頻率作為總體的慨率,以廠家支付費(fèi)用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進(jìn)行一一檢驗(yàn)?請說明理由;

(Ⅲ)為加大升級力度,廠家需增購設(shè)備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設(shè)備產(chǎn)品中一、二、三級品的概率分別是,.若將甲設(shè)備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應(yīng)選購哪種設(shè)備?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

①點(diǎn)的極角;

面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀(jì)念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平

均數(shù),近似為樣本方差

(i)利用該正態(tài)分布,求;

(ii)央視媒體平臺從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開放40年圖片展”表彰大會,現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β是空間中的兩個平面,l,m是兩條直線,則使得αβ成立的一個充分條件是(

A.lα,mβ,lmB.lm,lαmβ

C.lα,mαlβ,mβD.lm,lαmβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點(diǎn),求a的值;

2)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為2,平面過正方體的一個頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

①點(diǎn)的極角;

面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案