解答題

在直角坐標(biāo)系中,過(guò)點(diǎn)(1,2)且斜率小于0的直線中,求與兩坐標(biāo)軸上的截距之和最小的直線方程.

答案:
解析:

  設(shè)l方程為y2k(x1)(k0)

  它與x軸、y軸的交點(diǎn)分別為(10)(02k)

  則l在兩坐標(biāo)軸上的截距和為(1)(2k)3k

  ∵k0,∴-k0,-0.∴(k)()2

  當(dāng)且僅當(dāng)-k=-,即k=-時(shí),等號(hào)成立.

  則當(dāng)k=-在時(shí),l與兩坐標(biāo)軸的截距之和最。

  此時(shí)lxy20


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20
,
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,
5
)

求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣M=
01
10
,N=
0-1
10

(Ⅰ)求矩陣NN;
(Ⅱ)若點(diǎn)P(0,1)在矩陣M對(duì)應(yīng)的線性變換下得到點(diǎn)P′,求P′的坐標(biāo).
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=2t+1
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的極坐標(biāo)方程是ρ=2cosθ(Ⅰ)在直角坐標(biāo)系xOy中,求圓C的直角坐標(biāo)方程
(Ⅱ)求圓心C到直線l的距離.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函數(shù)y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專(zhuān)題十七 選修系列 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿(mǎn)分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=。
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿(mǎn)分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(福建卷)解析版(理) 題型:解答題

 本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題做答,滿(mǎn)分14分。如果多做,則按所做的前兩題計(jì)分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。

(1)選修4-2:矩陣與變換

已知矩陣M=,,且,

(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)求直線在矩陣M所對(duì)應(yīng)的線性變換下的像的方程。

(2)選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為

求|PA|+|PB|。

(3)選修4-5:不等式選講

已知函數(shù)。

(Ⅰ)若不等式的解集為,求實(shí)數(shù)的值;

(Ⅱ)在(Ⅰ)的條件下,若對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案