【題目】已知點A(1, )在橢圓E: =1上,若斜率為 的直線l與橢圓E交于B,C兩點,當(dāng)△ABC的面積最大時,求直線l的方程.

【答案】解:設(shè)直線l的方程為y= x+m,設(shè)B(x1 , y1),C(x2 , y2),
,消去y,整理得4x2+2 mx+m2﹣4=0,
則△=8m2﹣16(m2﹣4)=8(8﹣m2)>0,解得:0≤m2<8,
由韋達(dá)定理可知:x1+x2=﹣ ,x1x2=
由弦長公式可知:丨BC丨= =
又點A到l的距離為d= = ,
故SABC= 丨BC丨d= = =
當(dāng)且僅當(dāng) m2=8﹣m2 , 即m=±2時取等號,此時滿足0≤m2<8,
故直線l的方程為y= x±2.
【解析】由題意可知:設(shè)直線l的方程為y= x+m,代入橢圓方程,由△>0,求得0≤m2<8,根據(jù)韋達(dá)定理及弦長公式求得丨BC丨,由點到直線的距離公式點A到l的距離為d,再利用三角形的面積公式求得SABC= 丨BC丨d,利用基本不等式的性質(zhì)即可求得△ABC的面積最大值時,m的取值,即可求得直線l的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為,直線與曲線交于兩點,與軸交于點.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建材公司在,兩地各有一家工廠,它們生產(chǎn)的建材由公司直接運往地.由于土路交通運輸不便,為了減少運費,該公司預(yù)備投資修建一條從地或地直達(dá)地的公路;若選擇從某地修建公路,則另外一地生產(chǎn)的建材可先運輸至該地再運至以節(jié)約費用.已知之間為土路,土路運費為每噸千米20元,公路的運費減半,,三地距離如圖所示.為了制定修路計劃,公司統(tǒng)計了最近10天兩個工廠每天的建材產(chǎn)量,得到下面的柱形圖,以兩個工廠在最近10天日產(chǎn)量的頻率代替日產(chǎn)量的概率.

(1)求“兩地工廠某天的總?cè)债a(chǎn)量為20噸”的概率;

(2)以修路后每天總的運費的期望為依據(jù),判斷從,哪一地修路更加劃算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)設(shè)函數(shù)是定義域為R的奇函數(shù).

(1)求k的值;

(2)若,試說明函數(shù)的單調(diào)性,并求使不等式恒成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),.

(1)若恒成立,求的取值范圍;

(2)證明:不論取何正值,總存在正數(shù),使得當(dāng)時,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢測某種產(chǎn)品的質(zhì)量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機(jī)抽取一件,試估計這件產(chǎn)品的質(zhì)量少于25千克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標(biāo)為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),且對任意實數(shù),恒有,當(dāng)時,

(1)求證: 是周期函數(shù);

(2)當(dāng)時,求的解析式;

(3)計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】O為原點的直角坐標(biāo)系中,點A(4,﹣3)為△OAB的直角頂點,已知AB=2OA,且點B的縱坐標(biāo)大于0
(1)求 的坐標(biāo);
(2)求圓C1:x2﹣6x+y2+2y=0關(guān)于直線OB對稱的圓C2的方程;在直線OB上是否存在點P,過點P的任意一條直線如果和圓C1圓C2都相交,則該直線被兩圓截得的線段長相等,如果存在求出點P的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案