【題目】已知橢圓:的離心率為,點(diǎn)A為該橢圓的左頂點(diǎn),過右焦點(diǎn)的直線l與橢圓交于B,C兩點(diǎn),當(dāng)軸時(shí),三角形ABC的面積為18.
求橢圓的方程;
如圖,當(dāng)動(dòng)直線BC斜率存在且不為0時(shí),直線分別交直線AB,AC于點(diǎn)M、N,問x軸上是否存在點(diǎn)P,使得,若存在求出點(diǎn)P的坐標(biāo);若不存在說明理由.
【答案】 ; 存在,P或.
【解析】
由離心率及三角形ABC的面積和a,b,c之間的關(guān)系求出橢圓方程;
由知A的坐標(biāo),設(shè)直線BC的方程,及B,C的坐標(biāo),進(jìn)而寫直線AB,AC的方程,與直線聯(lián)立求出M,N的坐標(biāo),假設(shè)存在P點(diǎn),是,使,求出P點(diǎn)坐標(biāo).
解:由已知條件得,解得;
所以橢圓的方程為;
設(shè)動(dòng)直線BC的方程為,,,
則直線AB、AC的方程分別為和,
所以點(diǎn)M、N的坐標(biāo)分別為,
聯(lián)立得,
所以;
于是,
假設(shè)存在點(diǎn)滿足,則,所以或5,
所以當(dāng)點(diǎn)P為或時(shí),有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)若的導(dǎo)函數(shù)存在兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在x軸,y軸上的截距分別為,證明:為定值;
(3)若是橢圓上不同兩點(diǎn),軸,圓E過,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為,沿著對(duì)角線將折起,使到達(dá)的位置,且.
(1)證明:平面平面;
(2)若是的中點(diǎn),點(diǎn)在線段上,且滿足直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),對(duì)于項(xiàng)數(shù)為的有窮數(shù)列,令為中最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7. 考查正整數(shù)1,2,…,的所有排列,將每種排列都視為一個(gè)有窮數(shù)列.
(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的的創(chuàng)新數(shù)列;若不存在,請(qǐng)說明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個(gè)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公比大于的等比數(shù)列,為數(shù)列的前項(xiàng)和,,且,,成等差數(shù)列.數(shù)列的前項(xiàng)和為,滿足,且,
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和為;
(3)將數(shù)列,的項(xiàng)按照“當(dāng)為奇數(shù)時(shí),放在前面;當(dāng)為偶數(shù)時(shí),放在前面”的要求進(jìn)行排列,得到一個(gè)新的數(shù)列:,,,,,,,,,,,,求這個(gè)新數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的,,均為有理數(shù)),為一個(gè)無理數(shù)列(即對(duì)任意的,為無理數(shù)).
(1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式;
(2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為;
(3)已知,,試計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面ABCD為直角梯形,,,,為正三角形.
Ⅰ點(diǎn)M為棱AB上一點(diǎn),若平面SDM,,求實(shí)數(shù)的值;
Ⅱ若,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com