問(wèn)題:若函數(shù)f(x)在區(qū)間[m,n]上是增函數(shù),在區(qū)間[n,k]上也是增函數(shù),則函數(shù)f(x)在區(qū)間(m,k)上________.

下面是甲、乙、丙、丁四位同學(xué)的判斷:

學(xué)生甲:必是減函數(shù).

學(xué)生乙:是增函數(shù)或減函數(shù).

學(xué)生丙:必是增函數(shù).

學(xué)生。何幢赜性鰷p性.

你認(rèn)為他們四人中誰(shuí)的說(shuō)法正確,你能給出證明嗎?若將閉區(qū)間[n,k]變?yōu)閰^(qū)間(n,k]結(jié)果又將如何?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:
(1)若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在
[2,+∞)
[2,+∞)
上遞增;
(2)當(dāng)x=
2
2
時(shí),f(x)=x+
4
x
,(x>0)的最小值為
4
4

(3)試用定義證明f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù)f(x)=x+
4
x
,(x<0)有最值嗎?是最大值還是最小值?此時(shí)x為何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)探究函數(shù)f(x)=x+
4
x
(x>0)的最小值,并確定相應(yīng)的x的值.先列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:((1)(2)問(wèn)的填空只要寫(xiě)出結(jié)果即可)
(1)若x1x2=4,則 f(x1
=
=
f(x2).(請(qǐng)?zhí)顚?xiě)“>,=,<”號(hào));若函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間 (0,2)上遞減,則f(x)在區(qū)間
(2,+∞)
(2,+∞)
  上遞增;
(2)當(dāng)x=
2
2
時(shí),f(x)=x+
4
x
(x>0)的最小值為
4
4
;
(3)根據(jù)函數(shù)f(x)的有關(guān)性質(zhì),你能得到函數(shù)f(x)=x+
4
x
(x<0)的最大值嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:
(1)若x1x2=4,則f(x1
=
=
f(x2)(請(qǐng)?zhí)顚?xiě)“>,=,<”號(hào));若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間
(2,+∞)
(2,+∞)
上遞增;
(2)當(dāng)x=
2
2
時(shí),f(x)=x+
4
x
,(x>0)的最小值為
4
4

(3)試用定義證明f(x)=x+
4
x
,在區(qū)間(0,2)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究f(x)=x+
1
x
,x∈(0,+∞)
的最小值,并確定相應(yīng)的x的值,類(lèi)表如下:
x
1
4
1
3
1
2
1 2 3 4
y
17
4
10
3
5
2
2
5
2
10
3
17
4

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列的問(wèn)題:
(1)若x1x2=1,則f(x1
 
f(x2)(請(qǐng) 用“>”、“<”或“=”填上);若函數(shù)f(x)=x+
1
x
,(x>0)
在區(qū)間(0,1)上單調(diào)遞減,則在區(qū)間
 
上單調(diào)遞增.
(2)當(dāng)x=
 
時(shí),f(x)=x+
1
x
,(x>0)
的最小值為
 

(3)證明函數(shù)f(x)=x+
1
x
在區(qū)間(1,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案