假設(shè)關(guān)于某種設(shè)備的使用年限x和支出的維修費用y(萬元),有以下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
(1)畫出散點圖;
(2)求支出的維修費用y與使用年限x的回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
分析:(1)利用描點法可得圖象;(2)先計算
.
x
.
y
,再求
5
i-1
x
i
2
=90
5
i-1
xiyi=112.3
根據(jù)公式可寫出線性回歸方程;(3)代入x=10求出預報值.
解答:精英家教網(wǎng)解:(1)散點圖如圖:
(2)
.
x
=
2+3+4+5+6
5
=4
.
y
=
2.2+3.8+5.5+6.5++7
5
=5
,
5
i=1
xiyi=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3.

5
i=1
x
2
i
=22+32+42+52+62=90.
…(5分)
b=
5
i=1
xiyi-5
.
x
.
y
5
i=1
x
2
i
-5
.
x
2
=
112.3-5×4×5
90-5×42
=1.23

a=
.
y
-b
.
x
=5-1.23×4=0.08

所求的線性回歸方程為
?
y
=1.23x+0.08
.…(9分)
(3)當x=10時,y=1.23×10+0.08=12.38,即維修費用為12.38萬元.                     …(12分)
點評:本題考查線性回歸方程的求解和應(yīng)用,是一個基礎(chǔ)題,解題的關(guān)鍵是正確應(yīng)用最小二乘法來求線性回歸方程的系數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

假設(shè)關(guān)于某種設(shè)備的使用年限x和支出的維修費用y(萬元),有以下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
若由資料知,y對x呈線性相關(guān)關(guān)系.
試求(1)線性回歸方程y=bx+c的確回歸系數(shù)a,b.
(2)估計使用年限為10年時,維修費用是多少?
參考公式:回歸直線方程:y=bx+a.
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
 
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2 -n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費用(萬元)有如下統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知時,

(參考數(shù)據(jù):

(1)對進行相關(guān)性檢驗,如果具有相關(guān)關(guān)系,求出回歸直線方程;

(2)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年吉林省實驗中學高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

假設(shè)關(guān)于某種設(shè)備的使用年限x和支出的維修費用y(萬元),有以下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
(1)畫出散點圖;
(2)求支出的維修費用y與使用年限x的回歸方程;
(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省汕頭市六都中學高一(下)期中數(shù)學試卷(解析版) 題型:解答題

假設(shè)關(guān)于某種設(shè)備的使用年限x和支出的維修費用y(萬元),有以下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
若由資料知,y對x呈線性相關(guān)關(guān)系.
試求(1)線性回歸方程y=bx+c的確回歸系數(shù)a,b.
(2)估計使用年限為10年時,維修費用是多少?
參考公式:回歸直線方程:y=bx+a.

查看答案和解析>>

同步練習冊答案