10.在復(fù)平面內(nèi),復(fù)數(shù)6-5i,-2+3i對(duì)應(yīng)的點(diǎn)分別為A、B,若C為線段AB的中點(diǎn),則點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)是( 。
A.4+8iB.8+2iC.2-iD.4+i

分析 復(fù)數(shù)6-5i對(duì)應(yīng)的點(diǎn)為A(6,-5),復(fù)數(shù)-2+3i對(duì)應(yīng)的點(diǎn)為B(-2,3).利用中點(diǎn)坐標(biāo)公式得線段AB的中點(diǎn)C,進(jìn)而得出.

解答 解:復(fù)數(shù)6-5i對(duì)應(yīng)的點(diǎn)為A(6,-5),復(fù)數(shù)-2+3i對(duì)應(yīng)的點(diǎn)為B(-2,3).
利用中點(diǎn)坐標(biāo)公式得線段AB的中點(diǎn)C(2,-1),
故點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)為2-i,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的幾何意義、中點(diǎn)坐標(biāo)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.與雙曲線$\frac{x^2}{3}-{y^2}=1$共漸近線且過(guò)點(diǎn)$(\sqrt{3},2)$的雙曲線的標(biāo)準(zhǔn)方程是$\frac{y^2}{3}-\frac{x^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示的韋恩圖中,A,B是非空集合,定義集合A#B為陰影部分表示的集合.若x,y∈R,A={x|0≤x≤2},B={y|y=3x,x>0},則A#B=( 。
A.{x|0<x<2}B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x||x|<1},B={x|x2-2x>0},則A∩(∁RB)等于( 。
A.(-1,0]B.(-1,0)C.[0,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}中,a1=4,an+1=2(an+2n),若不等式2n2-n-3<λan對(duì)?n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是$(\frac{3}{8},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}滿足3an+1+an=0,${a_3}=\frac{4}{9}$,則{an}的前8項(xiàng)和等于( 。
A.-6(1-3-8B.$\frac{1}{9}(1-{3^{-8}})$C.3(1-3-8D.3(1+3-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)是a,b兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,( 。
A.若α⊥β,則a⊥βB.若α⊥β,則a⊥bC.若α∥β,則a∥bD.若α∥β,則a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=Asin($\frac{π}{2}$x+φ)(A>0)滿足f(1)=0,則( 。
A.f(x-2)一定是奇函數(shù)B.f(x+1)一定是偶函數(shù)
C.f(x+3)一定是偶函數(shù)D.f(x-3)一定是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線L過(guò)拋物線C:x2=4y的焦點(diǎn),且與y軸垂直,則L與C所圍成的圖形的面積等于$\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案