(本小題滿分12分)
已知平面區(qū)域被圓C及其內(nèi)部所覆蓋.
(1)當(dāng)圓C的面積最小時(shí),求圓C的方程;
(2)若斜率為1的直線l與(1)中的圓C交于不同的兩點(diǎn)A、B,且滿足CA⊥CB,求直線l的方程.
(1) (x-2)2+(y-1)2=5. (2) y=x-1±
【解析】
試題分析:(1)由題意知此平面區(qū)域表示的是以O(shè)(0,0),P(4,0),Q(0,2)構(gòu)成的三角形及其內(nèi)部,且△OPQ是直角三角形,
∵覆蓋它的且面積最小的圓是其外接圓.∴圓心是(2,1),半徑是,
∴圓C的方程是(x-2)2+(y-1)2=5.
(2)設(shè)直線l的方程是:y=x+b.∵CA⊥CB,∴圓心C到直線l的距離是,
即=.解之得,b=-1±.
∴直線l的方程是:y=x-1±.
考點(diǎn):圓的方程及直線與圓相交問題
點(diǎn)評(píng):(1)中首要分析出面積最小的圓是三角形的外接圓,(2)中直線與圓相交時(shí)圓心到直線的距離,弦長的一半及圓的半徑構(gòu)成直角三角形,常利用勾股定理尋找關(guān)系式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com