定義在R上函數(shù)f(x)滿足條件:f(x+2)=數(shù)學(xué)公式,當(dāng)x∈(0,2)時(shí),數(shù)學(xué)公式,則f(2011)=________.

2
分析:函數(shù)解析式只知道一部分,而要求的函數(shù)值的自變量不在此區(qū)間上,由題設(shè)條件知本題中所給的函數(shù)是一個(gè)周期性函數(shù),
故可以利用周期性這一性質(zhì)將要求的函數(shù)值轉(zhuǎn)化到區(qū)間(0,2)上求解.
解答:由題意定義在R上的函數(shù)f(x),f(2+x)=,由此式恒成立可得,此函數(shù)的周期是4.
又當(dāng)x∈(0,2)時(shí),f(x)=,則f(1)=
由此f(2011)=f(4×502+3)=f(3)==2.
故答案為 2.
點(diǎn)評(píng):本題考點(diǎn)是函數(shù)的值,本題考查利用函數(shù)的性質(zhì)通過轉(zhuǎn)化來求函數(shù)的值,是函數(shù)性質(zhì)綜合運(yùn)用的一道好題.
對(duì)于本題中恒等式的意義要好好挖掘,做題時(shí)要盡可能的從這樣的等式中挖掘出信息.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列6個(gè)命題中正確命題個(gè)數(shù)是( 。
①第一象限角是銳角;
②若cos(α+β)=-1,則sin(α+2β)+sinβ=0
函數(shù)y=sin(
π
4
-2x)的增區(qū)間是(kπ+
8
,kπ+
8
),k∈Z

④角α終邊經(jīng)過點(diǎn)(a,a),(a≠0)時(shí),sinα+cosα=
2

⑤若y=sin(ωx)的周期為4π,則ω=
1
2

⑥若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則y=f(x)是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,且f(
x
5
)=
1
2
f(x)
當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f(
1
2011
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)部分自變量與函數(shù)值對(duì)應(yīng)關(guān)系如表,若f(x)為偶函數(shù),且在[0,+∞)上為增函數(shù),不等式-1≤f(x)<3的解集是(  )
x 0 2 3 4
y -1 1 2 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上函數(shù)f(x)的圖象與函數(shù)g(x)=a(x-2)+2(2-x)3(a為常數(shù))的圖象關(guān)于直線x=1對(duì)稱.
(Ⅰ)求f(x)的解析式;?
(Ⅱ)設(shè)F(x)=(
f(x)x
+4lnx)′
,當(dāng)m>0時(shí),判斷F(m3)與F(m2)的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=-f(2-x),當(dāng)f(-3)=-2 時(shí),f (2007)的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案