【題目】為研究患肺癌與是否吸煙有關(guān),做了一次相關(guān)調(diào)查,其中部分?jǐn)?shù)據(jù)丟失,但可以確定的是不吸煙人數(shù)與吸煙人數(shù)相同,吸煙患肺癌人數(shù)占吸煙總?cè)藬?shù)的;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為

1若吸煙不患肺癌的有人,現(xiàn)從患肺癌的人中用分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;

2若研究得到在犯錯(cuò)誤概率不超過的前提下,認(rèn)為患肺癌與吸煙有關(guān),則吸煙的人數(shù)至少有多少?

附: ,其中

【答案】(1);(2)吸煙人數(shù)至少為人.

【解析】試題分析:1)先求出吸煙的人有人,按比例可得其中肺癌的有16人,不患肺癌的有4人,按分層抽樣的定義可得抽取的5人中,4人患病,1人不患病,利用列舉法可得抽取方式共有10種,都患病的6種,由概率計(jì)算公式可得結(jié)果;(2)設(shè)吸煙人數(shù)為,列出列聯(lián)表,由表計(jì)算出,根據(jù)表得,解出即可得最后結(jié)果.

試題解析:1設(shè)吸煙人數(shù)為,依題意有,所以吸煙的人有人,故有吸煙患肺癌的有16人,不患肺癌的有4人.用分層抽樣的方法抽取5人,則應(yīng)抽取吸煙患肺癌的4人,記為.不吸煙患肺癌的1人,記為A.從5人中隨機(jī)抽取2人,所有可能的結(jié)果有, , , , , , , , ,共種,則這兩人都是吸煙患肺癌的情形共有種,∴,即這兩人都是吸煙患肺癌的概率為

2設(shè)吸煙人數(shù)為,由題意可得列聯(lián)表如下:

患肺癌

不患肺癌

合計(jì)

吸煙

不吸煙

總計(jì)

由表得, ,由題意,,

為整數(shù),∴的最小值為.則,即吸煙人數(shù)至少為人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人上午7時(shí),乘摩托艇以勻速vkm/h(8≤v≤40)從A港出發(fā)到距100km的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛?cè)ィ畱?yīng)該在同一天下午4至9點(diǎn)到達(dá)C市. 設(shè)乘坐汽車、摩托艇去目的地所需要的時(shí)間分別是xh,yh.
(1)作圖表示滿足上述條件的x,y范圍;
(2)如果已知所需的經(jīng)費(fèi)p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分別是多少時(shí)p最小?此時(shí)需花費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),且f(1)=
(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)an=nf(n),n∈N* , 求證a1+a2+a3+…+an<2;
(3)設(shè)bn=(9﹣n) ,n∈N* , Sn為bn的前n項(xiàng)和,當(dāng)Sn最大時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,PA⊥圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC⊥平面PAC;
(2)若Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移 個(gè)單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達(dá)式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 , ),從上的點(diǎn)軸的垂線,交于點(diǎn),再從點(diǎn)軸的垂線,交于點(diǎn).設(shè), .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,數(shù)列的前項(xiàng)和為,求證: ;

(Ⅲ)若已知),記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,B= ,AC=2 ,cosC=

(1)求sin∠BAC的值及BC的長度;
(2)設(shè)BC的中點(diǎn)為D,求中線AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案