【題目】對(duì)于區(qū)間和函數(shù),若同時(shí)滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域還是,則稱區(qū)間為函數(shù)的“不變”區(qū)間.
(1)求函數(shù)的所有“不變”區(qū)間.
(2)函數(shù)是否存在“不變”區(qū)間?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
【答案】(1)(2)
【解析】試題分析:(1)先確定函數(shù)單調(diào)性,再根據(jù)“不變”區(qū)間定義得,解得,即得“不變”區(qū)間(2)同上先確定函數(shù)單調(diào)性,再根據(jù)“不變”區(qū)間定義得,化簡(jiǎn)得,因此,最后根據(jù)函數(shù),求實(shí)數(shù)的取值范圍
試題解析:(1)易知函數(shù)單調(diào)遞增,
故有解得 又,所以
所以函數(shù)的“不變”區(qū)間為.
(2)易知函數(shù)單調(diào)遞增,若函數(shù)存在“不變”區(qū)間,則有,且消去得,整理得.
因?yàn)?/span>,所以,即.
又由得,所以.
所以 所以.
綜上,當(dāng)時(shí),函數(shù)存在“不變”區(qū)間
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分
布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證: ;
(2)當(dāng)且時(shí),求函數(shù)的最小值;
(3)若,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是關(guān)于函數(shù)y=f(x),x∈[a,b]的幾個(gè)命題:
①若x0∈[a,b]且滿足f(x0)=0,則(x0,0)是f(x)的一個(gè)零點(diǎn);
②若x0是f(x)在[a,b]上的零點(diǎn),則可用二分法求x0的近似值;
③函數(shù)f(x)的零點(diǎn)是方程f(x)=0的根,但f(x)=0的根不一定是函數(shù)f(x)的零點(diǎn);
④用二分法求方程的根時(shí),得到的都是近似值.
那么以上敘述中,正確的個(gè)數(shù)為 ( )
A. 0 B. 1 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】否定“自然數(shù)、、中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為( )
A. 、、都是奇數(shù) B. 、、至少有兩個(gè)偶數(shù)
C. 、、都是偶數(shù) D. 、、中都是奇數(shù)或至少有兩個(gè)偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有將;某顧客從此10張券中任取2張,求:
(1)該顧客中獎(jiǎng)的概率;
(2)該顧客獲得的獎(jiǎng)品總價(jià)值(元)的概率分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O為AB的中點(diǎn),矩形ABCD 所在的平面和平面ABEF互相垂直.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(3)求三棱錐C-BEF的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com