【題目】如圖,在直角梯形中,,且分別為線段的中點,沿折起,使,得到如下的立體圖形.

(1)證明:平面平面;

(2)若,求點到平面的距離.

【答案】(1)見解析;(2)2.

【解析】試題分析:

(1)由折疊問題的特征可得,,,故可得平面,根據(jù)面面垂直的判定定理可證得結(jié)論.(2)過點于點,連結(jié),結(jié)合條件可得可得,于是得到.然后根據(jù)條件求得,,然后根據(jù)可求得點到平面的距離.

試題解析

(1)證明:由題意可得

,

,,

平面.

平面,

∴平面平面

(2)解:

過點于點,連結(jié),則平面,

平面,

,

,

平面

平面

于是可得,

,

,

設(shè)點到平面的距離為,

,可得

,

平面,

,

,

解得

故點到平面的距離為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和名女志愿者.將這名志愿者的身高編成如右莖葉圖(單位: ),若身高在以上(包括)定義為“高個子”,身高在以下(不包括)定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”.

(Ⅰ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取人,再從這人中選人,那么至少有一人是“高個子”的概率是多少?

(Ⅱ)若從所有“高個子”中選名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點P在棱長為1的正方體ABCDA1B1C1D1的對角線BD1上,記λ.當(dāng)∠APC為鈍角時,λ的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項和為,對任意的正整數(shù)n,都有成立,記),

(1)求數(shù)列的通項公式;

2)記),設(shè)數(shù)列的前n和為,求證:對任意正整數(shù)n,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足 (),數(shù)列滿足 (),

1證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

2,求數(shù)列的前項和;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面ABCD是邊長為2的菱形,側(cè)面PAD是正三角形,,E為AD的中點,二面角

證明:平面PBE;

求點P到平面ABCD的距離;

求直線BC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,若存在實數(shù)使得一條曲線與直線有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:

;②;③;④.

其中直線的“絕對曲線”的條數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案