【題目】定義在R上的偶函數(shù)f(x),滿足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函數(shù),又α、β是銳角三角形的兩個(gè)內(nèi)角,則(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

【答案】A
【解析】解:在R上的偶函數(shù)f(x),滿足f(x+1)=f(x﹣1),故f(x+2)=f(x),故函數(shù)f(x)的周期為2. ∵f(﹣x)=f(x),f(x)在[﹣3,﹣2]上是減函數(shù),
根據(jù)偶函數(shù)的對(duì)稱性可知函數(shù)f(x)在[2,3]上是增函數(shù),
根據(jù)函數(shù)的周期可知,函數(shù)f(x)在[0,1]上是增函數(shù),
∵α,β是銳角三角形的兩個(gè)內(nèi)角,∴α+β> , >α> ﹣β>0,
∴1≥sinα>sin( ﹣β)=cosβ≥0,∴f(sinα)>f(cosβ),
故選:A.
由條件得到f(x)是周期為2的周期函數(shù),由f(x)是定義在R上的偶函數(shù),在[﹣3,﹣2]上是減函數(shù),根據(jù)偶函數(shù)的對(duì)稱性可知f(x)在[2,3]上單調(diào)遞增,進(jìn)而得到函數(shù)f(x)在[0,1]上單調(diào)增,再由α,β是銳角三角形的兩個(gè)內(nèi)角,得 >α> ﹣β>0,且sinα、cosβ都在區(qū)間[0,1]上,從而可求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 則 ,推廣到空間可以得到類似結(jié)論;已知正四面體P﹣ABC的內(nèi)切球體積為V1 , 外接球體積為V2 , 則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=a(x-lnx)+,a∈R.

(I)討論f(x)的單調(diào)性;

(II)當(dāng)a=1時(shí),證明f(x)>f’(x)+對(duì)于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+2x在x=﹣1處取得極值,且在點(diǎn)(1,f(1))處的切線的斜率為2. (Ⅰ)求a,b的值:
(Ⅱ)若關(guān)于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組抽出的號(hào)碼為28,則第8組抽出的號(hào)碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于(
A.46
B.45
C.70
D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若直線與曲線恒相切于同一定點(diǎn),求的方程;

2)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x3﹣2ax+a在(1,2)內(nèi)有極小值,則實(shí)數(shù)a的取值范圍是(
A.(0,
B.(0,3)
C.( ,6)
D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品展開(kāi)促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:

甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).

乙商場(chǎng):從裝有4個(gè)白球,4個(gè)紅球和4個(gè)籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個(gè)不同顏色的球,即為中獎(jiǎng).

(Ⅰ)試問(wèn):購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?說(shuō)明理由;

(Ⅱ)記在乙商場(chǎng)購(gòu)買該商品的顧客摸到籃球的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當(dāng)x>0時(shí),f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調(diào)遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內(nèi)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案