已知二項式(
x
3
-
3
x
)9

(1)求它展開式的常數(shù)項;
(2)求它展開式中二項式系數(shù)最大的項.
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:(1)由題意知利用二項展開式的通項公式寫出展開式的通項,令x的指數(shù)為0,得到結(jié)果;
(2)展開式中二項式系數(shù)最大的項為第五項、第六項.
解答: 解:(1)展開式的通項為Tr+1=
C
r
9
(
x
3
)9-r(-
3
x
)r
=(-1)r
C
r
9
32r-9•x9-
3r
2
,
令9-
3r
2
=0,可得r=6,∴展開式的常數(shù)項為T6+1=2268;   (6分)
(2)展開式中二項式系數(shù)最大的項為第五項42x3;第六項-378x
3
2
(12分)
點評:本題考查利用二項展開式的通項公式解決二項展開式的特定項問題,本題解題的關(guān)鍵是寫出二項式的展開式,所有的這類問題都是利用通項來解決的.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)
3+4i
i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角所對的邊分別為a,b,c,
m
=(2a,1),
n
=(2b-c,cosC),且
m
n
.求:
(Ⅰ)求sinA的值;        
(Ⅱ)求三角函數(shù)式
-2cos2C
1+tanC
+1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=(-2n+5)×6n,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
ab
a2+b2-c2

(Ⅰ)求角C大小;     
(Ⅱ)當c=1時,求ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前項和記為Sn,a1=1,且滿足an+1=2Sn+1(n∈N+).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)對n∈N+,在an與an+1之間插入3n個數(shù),使這3n+2個數(shù)成等差數(shù)列,記插入的這3n個數(shù)的和為bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
8
x2-6x+7
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均不相等的等差數(shù)列{an}的前四項的和為S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an與前n項和Sn;
(2)記Tn為數(shù)列{
1
anan+1
}的前n項和,若Tn≤λan+1對任意的正整數(shù)n都成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中心在原點,焦點在坐標軸上的橢圓C的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合,
(1)求橢圓C的方程;
(2)過直線l:x=4上一點M引橢圓C的兩條切線,切點分別是A,B,求證:AB過橢圓C的右焦點F;(可用結(jié)論:橢圓
x2
a2
+
y2
b2
=1上點P(x0,y0)處切線方程:
x0x
a2
+
y0y
b2
=1)
(3)在(2)的條件下,是否存在λ,使得λ|AF|•|BF|=|AF|+|BF|恒成立?若存在,求λ的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案