【題目】的內角所對的邊分別是,且的等差中項.

(Ⅰ)求角;

(Ⅱ)設,求周長的最大值.

【答案】(1)60°;(2)6.

【解析】分析:(1)法一:由題意,利用正弦定理,化簡得,即可求解角的大;

法二:由題意,利用余弦定理化簡得到,即,即可求解角的大;

(2)法一:由余弦定理及基本不等式,得,進而得周長的最大值;法二:由正弦定理和三角恒等變換的公式化簡整理得,進而求解周長的最大值.

詳解:(1)法一:由題,,

由正弦定理,,

,解得,所以

法二:由題,由余弦定理得:

解得,所以

(2)法一:由余弦定理及基本不等式,

,

,當且僅當時等號成立,

周長的最大值為

法二:由正弦定理,

故周長

,∴當時,周長的最大值為

法三:如圖,延長使得,則

于是,在中,由正弦定理:,

,

故周長,

,∴當時,周長的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】商場銷售某一品牌的羊毛衫,購買人數(shù)是羊毛衫標價的一次函數(shù),標價越高,購買人數(shù)越少.把購買人數(shù)為零時的最低標價稱為無效價格,已知無效價格為每件300.現(xiàn)在這種羊毛衫的成本價是100/ 件,商場以高于成本價的價格(標價)出售. 問:

1)商場要獲取最大利潤,羊毛衫的標價應定為每件多少元?

2)通常情況下,獲取最大利潤只是一種理想結果,如果商場要獲得最大利潤的75%,那么羊毛衫的標價為每件多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐 中,底面 為菱形,且直線 又棱 的中點,
(Ⅰ) 求證:直線
(Ⅱ) 求直線 與平面 的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線 ,過點 的直線 為參數(shù))與曲線 相交于點 , 兩點.
(1)求曲線 的平面直角坐標系方程和直線 的普通方程;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐的底面為直角梯形, .點的中點.

)求證: 平面;

)已知平面底面,且.在棱上是否存在點,使?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x,y∈R,滿足2≤y≤4﹣x,x≥1,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下關于命題的說法正確的有(填寫所有正確命題的序號).
①“若 ,則函數(shù) ,且 )在其定義域內是減函數(shù)”是真命題;
②命題“若 ,則 ”的否命題是“若 ,則 ”;
③命題“若 , 都是偶數(shù),則 也是偶數(shù)”的逆命題為真命題;
④命題“若 ,則 ”與命題“若 ,則 ”等價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , ,其中
(1)當 時,求函數(shù) 的單調遞減區(qū)間;
(2)若對任意的 , 為自然對數(shù)的底數(shù))都有 成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側面PAD底面ABCD,側棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中點.

(Ⅰ)求證:PO平面ABCD

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點A到平面PCD的距離.

查看答案和解析>>

同步練習冊答案