【題目】未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日?qǐng)?bào)記者.相對(duì)于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開二維碼也需要時(shí)間和手機(jī)信號(hào).刷臉支付將會(huì)替代手機(jī),成為新的支付方式.某地從大型超市門口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如下列聯(lián)表:

男性

女性

總計(jì)

刷臉支付

18

25

非刷臉支付

13

總計(jì)

50

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為使用刷臉支付與性別有關(guān)?

2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎(jiǎng)活動(dòng),抽獎(jiǎng)活動(dòng)規(guī)則如下:

一等獎(jiǎng)中獎(jiǎng)概率為0.25,獎(jiǎng)品為10元購(gòu)物券張(,且),二等獎(jiǎng)中獎(jiǎng)概率0.25,獎(jiǎng)品為10元購(gòu)物券兩張,三等獎(jiǎng)中獎(jiǎng)概率0.5,獎(jiǎng)品為10元購(gòu)物券一張,每位顧客是否中獎(jiǎng)相互獨(dú)立,記參與抽獎(jiǎng)的兩位顧客中獎(jiǎng)購(gòu)物券金額總和為元,若要使的均值不低于50元,求的最小值.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.869

【答案】1)列聯(lián)表見解析,沒有95%的把握認(rèn)為使用刷臉支付與性別是否有關(guān)(26

【解析】

1)完善列聯(lián)表,計(jì)算,得到答案.

2的可能取值為,,40,30,20,計(jì)算概率得到分布列,,得到答案.

1)列聯(lián)表補(bǔ)充如下:

男性

女性

總計(jì)

刷臉支付

18

7

25

非刷臉支付

12

13

25

總計(jì)

30

20

50

所以沒有95%的把握認(rèn)為使用刷臉支付與性別是否有關(guān).

2)由題意可知,的可能取值為,,40,30,20

;

;

;

所以的分布列為

40

30

20

所以.

解得,的最小值為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為常數(shù),且),直線與曲線交于兩點(diǎn).

1)若,求實(shí)數(shù)的值;

2)若點(diǎn)的直角坐標(biāo)為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程及直線的普通方程;

2)設(shè)直線與曲線交于,兩點(diǎn)(點(diǎn)在點(diǎn)左邊)與直線交于點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1a0,b0)的左右焦點(diǎn)分別為F1,F2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個(gè)交點(diǎn),則雙曲線C的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=alnx21在定義域(0,2)內(nèi)有兩個(gè)極值點(diǎn).

1)求實(shí)數(shù)a的取值范圍;

2)設(shè)x1x2fx)的兩個(gè)極值點(diǎn),求證:lnx1+lnx2+lna0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=exax+aaR),其圖象與x軸交于Ax1,0),Bx2,0)兩點(diǎn),且x1x2

1)求a的取值范圍;

2)證明:f′()<0f′(x)為函數(shù)fx)的導(dǎo)函數(shù));

3)設(shè)點(diǎn)C在函數(shù)yfx)的圖象上,且△ABC為等腰直角三角形,記t,求(a1)(t1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐的底面邊長(zhǎng)為,分別為、的中點(diǎn).

1)當(dāng)時(shí),證明:平面平面;

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面平面,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自從新型冠狀病毒爆發(fā)以來,全國(guó)范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時(shí)通報(bào)各項(xiàng)數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020123-31日這9天的新增確診人數(shù).

日期

23

24

25

26

27

28

29

30

31

時(shí)間

1

2

3

4

5

6

7

8

9

新增確診人數(shù)

15

19

26

31

43

78

56

55

57

經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個(gè)病毒的攜帶者在病情發(fā)作之前通常有長(zhǎng)達(dá)14天的潛伏期,這個(gè)期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時(shí)間超過15秒,就有可能傳染病毒.

1)將123日作為第1天,連續(xù)9天的時(shí)間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對(duì)疫情進(jìn)行分析.對(duì)上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計(jì)量的值(部分?jǐn)?shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測(cè)第10天新增確診人數(shù).

2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

同步練習(xí)冊(cè)答案