設(shè)不等式組
0≤x≤1
0≤y≤1
表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)任取一點(diǎn)P(x0,y0),則點(diǎn)P滿足y0<2x0的概率為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:概率與統(tǒng)計(jì)
分析:作出不等式組對(duì)應(yīng)的區(qū)域,利用幾何概型的概率公式,即可得到結(jié)論.
解答: 解:不等式組
0≤x≤1
0≤y≤1
表示的平面區(qū)域?yàn)镈的面積為1,
不等式y(tǒng)<2x對(duì)應(yīng)的區(qū)域?yàn)樘菪蜲ABC,
當(dāng)y=1時(shí),x=
1
2
,即C(
1
2
,0),
則梯形OABC的面積S=
(
1
2
+1)×1
2
=
3
4
,
則在區(qū)域D內(nèi)任取一點(diǎn)P(x0,y0),則點(diǎn)P滿足y0<2x0的概率為
3
4
1
=
3
4
,
故答案為:
3
4
點(diǎn)評(píng):本題主要考查二元一次不等式表示平面區(qū)域以及幾何概型的概率計(jì)算,利用條件求出對(duì)應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a5+2a4=a2a4,前2m(m∈N*)項(xiàng)和是前2m項(xiàng)中所有偶數(shù)項(xiàng)和的
3
2
倍.
(Ⅰ)求通項(xiàng)an;
(Ⅱ)已知{bn}滿足bn=(n-λ)an(n∈N*),若{bn}是遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)D是由
|x|≤1
|y|≤1
所確定的區(qū)域,E是由函數(shù)y=x3的圖象與x軸及x=±1圍成的區(qū)域,向D中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐P-ABC的側(cè)棱PA、PB、PC兩兩垂直,且AB=
2
,則正三棱錐P-ABC的外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①已知平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ.
②E,F(xiàn),G,H是空間四邊形ABCD各邊AB,BC,CD,DA的中點(diǎn),若對(duì)角線BD=2,AC=4,則EG2+HF2=10
③過(guò)△ABC所在平面α外一點(diǎn)P,作PO⊥α,垂足為O,連接PA,PB,PC,若PA⊥PB,PB⊥PC,PC⊥PA,則點(diǎn)O是△ABC的垂心.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象的相鄰兩對(duì)稱(chēng)中心的距離為π,且f(x+
π
2
)=f(-x),則函數(shù)y=f(
π
4
-x)是( 。
A、偶函數(shù)且在x=0處取得最大值
B、偶函數(shù)且在x=0處取得最小值
C、奇函數(shù)且在x=0處取得最大值
D、奇函數(shù)且在x=0處取得最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某一個(gè)班全體學(xué)生參加物理測(cè)試,成績(jī)的頻率分布直方圖如圖,則該班的平均分估計(jì)是( 。
A、70B、75C、68D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)f(x)=sin2x-2sinxcosx+3cos2x的圖象沿x軸向左平移m(m>0)個(gè)單位,所得函數(shù)g(x)的圖象關(guān)于直線x=
π
8
對(duì)稱(chēng),則m的最小值為(  )
A、
π
4
B、
π
3
C、
π
2
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)是區(qū)(
1
2
,1)內(nèi)的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(3)過(guò)坐標(biāo)原點(diǎn)可以作幾條直線與曲線y=f(x)相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案