設(shè)函數(shù)f(x)=
x2-x+b,x≥3
2x,x<3
,若函數(shù)f(x)在R上為增函數(shù),則實數(shù)b的取值范圍是
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:關(guān)鍵一點是函數(shù)f(x)在R上為增函數(shù),當 x=3時的最小值要大于等于23,聯(lián)立不等式即可解出.
解答: 解:當x≥3時,f(x)是二次函數(shù),1>0,開口向上,對稱軸x=
1
2

∴函數(shù)f(x)在[3,+∞)上為增函數(shù),
當x<3時,f(x)=2x也是增函數(shù),
若函數(shù)f(x)在R上為增函數(shù),
∴需滿足x=3時,x2-x+b≥2x,即32-3+b≥23,解得:b≥2,
故答案為:[2,+∞).
點評:本題考察了函數(shù)的單調(diào)性的性質(zhì),結(jié)合二次函數(shù)和指數(shù)函數(shù)圖象及性質(zhì),再畫出草圖,容易得出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x2-2ax+5.
(1)若不等式f(x)>0對任意x∈R恒成立,求實數(shù)a的最值范圍;
(2)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是平面內(nèi)到兩條定直線x=0,y=0距離之和為8的點的軌跡.給出下列四個結(jié)論:
①曲線C關(guān)于y軸對稱;            
②曲線C關(guān)于原點對稱;
③曲線C上任意一點P在x軸上的投影點為P′,則|OP′|≤8;
④曲線C與x軸,y軸在第一象限內(nèi)圍成的圖象的面積為16(3
2
-2).
以上結(jié)論中正確的序號是
 
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,sin(A+B)=
3
5
,sin(A-B)=
5
13
,則tan2B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c,已知acosB+bcosA+2ccosC=0,則cosA-cosB的值的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c.若a=c=
6
,sin
B
2
=
3
3
,則cosB=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在[a,b]區(qū)間上的值域仍為[a,b],則區(qū)間[a,b]稱為函數(shù)f(x)的一個的保值區(qū)間,函數(shù)y=2sinx的保值區(qū)間個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x 6 8 10 12
y 2 3 5 6
根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
中的
b
的值為0.7,則記憶力為14的同學(xué)的判斷力約為
 
.(附:線性回歸方程
y
=
b
x+
a
中,
a
=
.
y
-
b
.
x
,其中
.
x
,
.
y
為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品共有三個等級,分別為一等品、二等品和不合格品.從一箱產(chǎn)品中隨機抽取1件進行檢測,設(shè)“抽到一等品”的概率為0.65,“抽到二等品”的概率為0.3,則“抽到不合格品”的概率為( 。
A、0.95B、0.7
C、0.35D、0.05

查看答案和解析>>

同步練習(xí)冊答案