(09年湖北八校聯(lián)考文)(12分)在某社區(qū)舉辦的《2008奧運知識有獎問答比賽》中,甲、乙、丙三人同時回答一道有關(guān)奧運知識的問題,已知甲回答對這道題的概率是,甲、丙兩人都回答錯的概率是,乙、丙兩人都回答對的概率是

   (Ⅰ)求乙、丙兩人各自回答對這道題的概率.

   (Ⅱ)求甲、乙、丙三人中恰有兩人回答對該題的概率.

解析:記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對該題的概率為:

……………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)已知函數(shù),函數(shù)的圖像在點的切線方程是

    (Ⅰ)求函數(shù)的解析式:

    (Ⅱ)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)如圖,已知正三棱柱的各棱長都為,為棱上的動點.

(Ⅰ)當時,求證:.                              

(Ⅱ) 若,求二面角的大。              

(Ⅲ) 在(Ⅱ)的條件下,求點到平面的距離.              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考理)(13分)

如圖,已知曲線與拋物線的交點分別為、,曲線和拋物線在點處的切線分別為,且、的斜率分別為、.

(Ⅰ)當為定值時,求證為定值(與無關(guān)),并求出這個定值;

(Ⅱ)若直線軸的交點為,當取得最小值時,求曲線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考理)(12分)如圖,已知正三棱柱各棱長都為為棱上的動點。

(Ⅰ)試確定的值,使得;

(Ⅱ)若,求二面角的大。

(Ⅲ)在(Ⅱ)的條件下,求點到面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)

已知向量,,).函數(shù)

的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為,且過點.

(Ⅰ)求函數(shù)的表達式;

(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

同步練習(xí)冊答案