【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實(shí)數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:
g(x)=a(x﹣2a)(x+a﹣2)=0得x=2a,x=2﹣a
∵{x|f(x)g(x)=0}={1,2},
∴
經(jīng)檢驗(yàn)a=1符合題意,∴a=1
(2)解法1:設(shè)由于{x|f(x)<0或g(x)<0}=R
當(dāng)a>0時,x→+∞總有f(x)>0,g(x)>0不符合題意
當(dāng)a<0時,由f(x),g(x)的圖象可得f(x)<0或g(x)<0成立則
∴
解法2:設(shè)由于{x|f(x)<0或g(x)<0}=R
當(dāng)a>0時,x→+∞總有f(x)>0,g(x)>0不符合題意
當(dāng)a<0時,若f(x)<0,則
若g(x)<0,則x∈(2﹣a,+∞)∪(﹣∞,2a)
則
∴
綜上
【解析】(1)通過方程的根,結(jié)合已知條件求解即可.(2)解法1:利用{x|f(x)<0或g(x)<0}=R,通過當(dāng)a>0時,當(dāng)a<0時,結(jié)合函數(shù)的圖象驗(yàn)證求解即可.解法2:由于{x|f(x)<0或g(x)<0}=R,驗(yàn)證當(dāng)a>0時,不符合題意,當(dāng)a<0時,討論若f(x)<0,若g(x)<0,推出結(jié)果即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的值的相關(guān)知識點(diǎn),需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù) ,且圖象上一個最高點(diǎn)為與最近的一個最低點(diǎn)的坐標(biāo)為 .
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個數(shù);
(Ⅲ)在銳角中,若,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)f(x)的定義域?yàn)閇﹣4,0)∪(0,4],若當(dāng)x∈(0,4]時,f(x)=log2x,
(1)求出函數(shù)在定義域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個袋子,其中甲袋中裝有編號分別為1、2、3、4的4個完全相同的球,乙袋中裝有編號分別為2、4、6的3個完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個球,從乙袋中取一個球,求所取出的3個球中含有編號為2的球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017衡陽第二次聯(lián)考】已知四棱錐中,底面為矩形, 底面, , , 為上一點(diǎn), 為的中點(diǎn).
(1)在圖中作出平面與的交點(diǎn),并指出點(diǎn)所在位置(不要求給出理由);
(2)求平面將四棱錐分成上下兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是( )
A.①②③
B.①③
C.②③
D.②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2014年上半年的收入x(單位:萬元)與月支出y(單位:萬元)的統(tǒng)計(jì)資料如下表所示:
月份 | 1月份 | 2月份 | 3月份 | 4月份 | 5月份 | 6月份 |
收入x | 12.3 | 14.5 | 15.0 | 17.0 | 19.8 | 20.6 |
支出Y | 5.63 | 5.75 | 5.82 | 5.89 | 6.11 | 6.18 |
根據(jù)統(tǒng)計(jì)資料,則( 。
A.月收入的中位數(shù)是15,x與y有正線性相關(guān)關(guān)系
B.月收入的中位數(shù)是17,x與y有負(fù)線性相關(guān)關(guān)系
C.月收入的中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
D.月收入的中位數(shù)是16,x與y有負(fù)線性相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為 , xf(x)<0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的奇函數(shù)f(x)滿足當(dāng)x>0時,f(x)=|2x﹣2|,
(1)求函數(shù)f(x)的解析式;
(2)在圖中的坐標(biāo)系中作出函數(shù)y=f(x)的圖象,并找出函數(shù)的單調(diào)區(qū)間;
(3)若集合{x|f(x)=a}恰有兩個元素,結(jié)合函數(shù)f(x)的圖象求實(shí)數(shù)a應(yīng)滿足的條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com