精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.

(1)證明:

(2)若, ,求二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】分析:(1) 先證明四邊形是平行四邊形,再證明從而可得四邊形是菱形,進而可得;(2)為坐標原點,建立如圖所示的空間直角坐標系,利用向量垂直數量積為零,列方程組求出平面的法向量,結合平面的法向量為,利用空間向量夾角余弦公式可得結果.

詳解(1)證明: 在三棱柱中,

.

.

平面.

相交于點,相交于點,連接,

四邊形均是平行四邊形,

,平面,

,,

是平面與平面所成其中一個二面角的平面角.

又平面平面,

四邊形是菱形,從而.

(2)解:由(1)及題設可知四邊形是菱形,

.

為坐標原點,建立如圖所示的空間直角坐標系,

,,,

,.

設平面的法向量,

,可得.

又由(1)可知平面,

可取平面的法向量為,

。由圖可知二面角的平面角為銳角,所以它的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

如圖,在平面直角坐標系xOy中,平行于x軸且過點A(3,2)的入射光線 l1

被直線ly=x反射.反射光線l2y軸于BC過點A且與l1, l2 都相切.

(1)l2所在直線的方程和圓C的方程;

(2)分別是直線l和圓C上的動點,求的最小值及此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經測算,當某產品促銷費用為x(萬元)時,銷售量t(萬件)滿足(其中,).現假定產量與銷售量相等,已知生產該產品t萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為/件.

1)將該產品的利潤y(萬元)表示為促銷費用x(萬元)的函數;

2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)若處取得極值,求過點且與處的切線平行的直線方程;

(II)當函數有兩個極值點,且時,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線為參數),曲線為參數).

(1)設相交于兩點,求

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知aR,函數fx)=log2a).

(Ⅰ)當a1,解不等式fx)>1;

(Ⅱ)設a0,若對任意t∈(﹣1,0],函數fx)在區(qū)間[tt+1]上的最大值與最小值的和不大于log26,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數,.

1)指出的單調性(不要求證明);

2)若有的值;

3)若,求使不等式恒成立的的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論

ACBD

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結論的序號是________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是函數的一個極值點.

(1)求的值;

(2)求函數的單調區(qū)間.

查看答案和解析>>

同步練習冊答案