是定義在上周期為的偶函數(shù),時(shí),,若,,則的大小關(guān)系為    (填寫,或=).

 

【答案】

【解析】時(shí),,所以上是增函數(shù);因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111916335333202282/SYS201211191634471132628040_DA.files/image006.png">,,所以.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義域?yàn)镽的函數(shù),對(duì)任意x∈R,都滿足:f(x+1)=f(x-1),f(1-x)=f(1+x),且當(dāng)x∈[0,1]時(shí),f(x)=3x-3-x
(1)請(qǐng)指出f(x)在區(qū)間[-1,1]上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;
(2)試證明f(x)是周期函數(shù),并求其在區(qū)間[2k-1,2k](k∈Z)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年高考北京四中全真模擬試卷——數(shù)學(xué) 題型:044

定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)a、b都有f(a+b)+f(a-b)=2f(a)·f(b)成立,且f(0)≠0.

(1)求f(0);

(2)證明f(x)的奇偶性;

(3)若存在常數(shù)c>0使f()=0,試問(wèn)f(x)是否為周期函數(shù).若是,指出它的一個(gè)周期,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

設(shè)為定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052210013201562023/SYS201205221003005937552931_ST.files/image002.png">的函數(shù),對(duì)任意,都滿足:,且當(dāng)時(shí),

(1)請(qǐng)指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;

(2)試證明是周期函數(shù),并求其在區(qū)間上的解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

設(shè)為定義域?yàn)?img width=17 height=17 src="http://thumb.zyjl.cn/pic1/0688/442/325442.gif" >的函數(shù),對(duì)任意,都滿足:,,且當(dāng)時(shí),

(1)請(qǐng)指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;

(2)試證明是周期函數(shù),并求其在區(qū)間上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

設(shè)為定義域?yàn)?img width=17 height=17 src="http://thumb.zyjl.cn/pic1/0688/318/255318.gif" >的函數(shù),對(duì)任意,都滿足:,,且當(dāng)時(shí),

(1)請(qǐng)指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;

(2)試證明是周期函數(shù),并求其在區(qū)間上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案