用數(shù)學(xué)歸納法證明+cosα+cos3α+…+cos(2n-1)α=··

(α≠kπ,n∈N*),驗(yàn)證n=1等式成立時(shí),左邊計(jì)算所得的項(xiàng)是(    )

A.                                   B.+cosα

C.+cosα+cos3α             D.+cosα+cos3α+cos5α

分析 分清等式左邊的構(gòu)成情況是解決此題的關(guān)鍵;對(duì)于本題也可把n=1代入右邊化簡(jiǎn)得出左邊.

解法一 因?yàn)榈仁降淖筮吺?n+1)項(xiàng)的形式,故n=1時(shí),應(yīng)保留兩項(xiàng),它們是+cosα.

解法二 當(dāng)n=1時(shí),右邊=sincos=·(sin2α+sinα)= (sinαcosα+sinα)=+cosα.

答案 B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)時(shí),從k到k+1,左端需要增加的代數(shù)式是( 。
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式“
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>2)”時(shí)的過程中,由n=k到n=k+1時(shí),不等式的左邊( 。
A、增加了一項(xiàng)
1
2(k+1)
B、增加了兩項(xiàng)
1
2k+1
+
1
2(k+1)
C、增加了兩項(xiàng)
1
2k+1
+
1
2(k+1)
,又減少了一項(xiàng)
1
k+1
D、增加了一項(xiàng)
1
2(k+1)
,又減少了一項(xiàng)
1
k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”的第二步是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明n(n+1)(2n+1)能被6整除時(shí),由歸納假設(shè)推證n=k+1時(shí)命題成立,需將n=k+1時(shí)的原式表示成( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),從n=k到n=k+1,左邊的式子之比是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案