【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有解,求實數(shù)的取值范圍;
(2)若對恒成立,求實數(shù)的取值范圍.
【答案】(1) m的取值范圍是;(2)實數(shù)a的取值范圍是.
【解析】試題分析:(1)即求函數(shù)在區(qū)間上值域,先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)數(shù)符號變化規(guī)律,確定單調(diào)性,進(jìn)而根據(jù)單調(diào)性求值域,(2)先參變分離,轉(zhuǎn)化為求對應(yīng)函數(shù)最值:的最小值,利用二次求導(dǎo)可得函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定其最小值取法,最后根據(jù)最小值得實數(shù)的取值范圍.
試題解析:(1)方程即為.
令,則.
令,則(舍),.
當(dāng)x∈[1, 3]時,隨x變化情況如表:
x | 1 | 3 | |||
+ | 0 | - | |||
極大值 |
∴當(dāng)x∈[1,3]時,.
∴m的取值范圍是.
(2)據(jù)題意,得對恒成立.
令,
則.
令,則當(dāng)x>0時,,
∴函數(shù)在上遞增.
∵,
∴存在唯一的零點(diǎn)c∈(0,1),且當(dāng)x∈(0,c)時,;當(dāng)時,
.
∴當(dāng)x∈(0,c)時,;當(dāng)時,.
∴在(0,c)上遞減,在上遞增,從而.
由得,即,兩邊取對數(shù)得,
∴.
∴,即所求實數(shù)a的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(1)已知函數(shù)具有性質(zhì),求出對應(yīng)的的值;
(2)證明:函數(shù)一定不具有性質(zhì);
(3)下列三個函數(shù):,,,哪些恒具有性質(zhì),并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點(diǎn)間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過定點(diǎn)A,該點(diǎn)也在拋物線上,若拋物線與圓有公共點(diǎn)P,且拋物線在P點(diǎn)處的切線與圓C也相切,則圓C上的點(diǎn)到拋物線的準(zhǔn)線的距離的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,四邊形是矩形,平面 平面,點(diǎn)、分別為、中點(diǎn).
(1)求證: 平面;
(2)若,求平面DEF與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:
方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;
方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與或垂直)作為正四棱柱的兩個底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)的長為dm,則當(dāng)為多少時,能使按方案②制成的正四棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右頂點(diǎn)分別為右焦點(diǎn)為,直線是橢圓在點(diǎn)處的切線.設(shè)點(diǎn)是橢圓上異于的動點(diǎn),直線與直線的交點(diǎn)為,且當(dāng)時, 是等腰三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)橢圓的長軸長等于,當(dāng)點(diǎn)運(yùn)動時,試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com