【題目】已知函數(shù).

(1)若關(guān)于的方程在區(qū)間上有解,求實數(shù)的取值范圍;

(2)若恒成立,求實數(shù)的取值范圍.

【答案】(1) m的取值范圍是;(2)實數(shù)a的取值范圍是.

【解析】試題分析:(1)即求函數(shù)在區(qū)間上值域,先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)數(shù)符號變化規(guī)律,確定單調(diào)性,進(jìn)而根據(jù)單調(diào)性求值域,(2)先參變分離,轉(zhuǎn)化為求對應(yīng)函數(shù)最值:的最小值,利用二次求導(dǎo)可得函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定其最小值取法,最后根據(jù)最小值得實數(shù)的取值范圍.

試題解析:(1)方程即為.

,則.

,則(舍),.

當(dāng)x∈[1, 3]時,隨x變化情況如表:

x

1

3

0

極大值

∴當(dāng)x∈[1,3]時,.

∴m的取值范圍是.

(2)據(jù)題意,得恒成立.

.

,則當(dāng)x>0時,,

∴函數(shù)上遞增.

存在唯一的零點(diǎn)c∈(0,1),且當(dāng)x∈(0,c)時,;當(dāng)時,

.

∴當(dāng)x∈(0,c)時,;當(dāng)時,.

在(0,c)上遞減,在上遞增,從而.

,即,兩邊取對數(shù)得,

.

,即所求實數(shù)a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù),且滿足, ,數(shù)列滿足),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).

1)已知函數(shù)具有性質(zhì),求出對應(yīng)的的值;

2)證明:函數(shù)一定不具有性質(zhì);

3)下列三個函數(shù):,,哪些恒具有性質(zhì),并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADAB,ABDC,ADDCAP2AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點(diǎn)間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過定點(diǎn)A,該點(diǎn)也在拋物線上,若拋物線與圓有公共點(diǎn)P,且拋物線在P點(diǎn)處的切線與圓C也相切,則圓C上的點(diǎn)到拋物線的準(zhǔn)線的距離的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形是矩形,平面 平面,點(diǎn)、分別為、中點(diǎn).

1)求證: 平面

2,求平面DEF與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成AB,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:

方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從BC中各裁剪出一個圓形作為圓柱的兩個底面;

方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與垂直)作為正四棱柱的兩個底面.

1設(shè)BC都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;

2設(shè)的長為dm,則當(dāng)為多少時,能使按方案②制成的正四棱柱的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右頂點(diǎn)分別為右焦點(diǎn)為,直線是橢圓在點(diǎn)處的切線.設(shè)點(diǎn)是橢圓上異于的動點(diǎn),直線與直線的交點(diǎn)為,且當(dāng), 是等腰三角形.

Ⅰ)求橢圓的離心率;

Ⅱ)設(shè)橢圓的長軸長等于,當(dāng)點(diǎn)運(yùn)動時,試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案