在△ABC中,邊AC=
13
,AB=5,cosA=
13
65
,過A作AP⊥BC于P,
AP
AB
AC
,則λμ=
 
考點:平面向量的基本定理及其意義
專題:解三角形,平面向量及應(yīng)用
分析:根據(jù)題意知,把向量
AP
AB
,
AC
表示出來,根據(jù)向量的加法,可知需要知道BP,BC的長,所以求出BP,BC的長即可.根據(jù)條件結(jié)合圖形知,用余弦定理求出BC,再根據(jù)正弦定理求sinB,cosB.
解答: 解:如下圖,根據(jù)條件,由余弦定理得:BC2=25+13-2×5×
13
×
13
65
=36,∴BC=6.
∵cosA=
13
65
,∴sinA=
18
13
65
,由正弦定理得:
6
18
13
65
=
13
sinB

∴sinB=
3
5
,cosB=
4
5
.∴BP=4=
2
3
BC

AP
=
AB
+
BP
=
AB
+
2
3
BC=
AB
+
2
3
(
AC
-
AB
)
=
1
3
AB
+
2
3
AC

∴λ=
1
3
,μ=
2
3
,∴λμ=
2
9

故答案為:
2
9

點評:首先明確本題用的方法是:用向量
AB
,
AC
表示
AP
.再一個正余弦定理要比較熟練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點,焦點在x軸上的雙曲線的一條漸近線過點(4,-2),則它的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2為橢圓的兩個焦點,過F2的直線交橢圓于A、B兩點,AF1⊥AB,且|AF1|=|AB|,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)的定義域為{1,2,3},值域為集合{1,2,3,4}的非空真子集,設(shè)點A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圓圓心為M,且
MA
+
MC
MB
(λ∈R),滿足條件的函數(shù)f(x)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1和F2,左、右頂點分別為A1和A2,過焦點F2且與x軸垂直的直線和雙曲線的一個交點為P,若|
PA1
|是|
F1F2
|和|
A1F2
|的等比中項,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同動點.給出以下判斷:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP,DQ與直線B1C1都成45°的角;
③若|PQ|=1,則四面體BDPQ的體積一定是定值;
④若|PQ|=1,則四面體BDPQ的表面積是定值.
⑤若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值.
其中真命題是
 
.(將正確命題的序號全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-
1
2
x2+blnx在[1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,1]
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率是2,焦點坐標是(0,-4)(0,4)則雙曲線的方程為( 。
A、
x2
4
-
y2
12
=1
B、
y2
4
-
x2
12
=1
C、
x2
10
-
y2
6
=1
D、
y2
6
-
x2
10
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=2cos2x的圖象,需要把函數(shù)y=sin2x的圖象( 。
A、向右平移
π
4
個單位,再向上平移1個單位
B、向左平移
π
4
個單位,再向上平移1個單位
C、向左平移
π
4
個單位,再向下平移1個單位
D、向右平移
π
4
個單位,再向下平移1個單位

查看答案和解析>>

同步練習(xí)冊答案