【題目】已知過點(diǎn)P(4,0)的動直線與拋物線C:交于點(diǎn)A,B,且(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求拋物線C的方程;
(2)當(dāng)直線AB變動時(shí),x軸上是否存在點(diǎn)Q使得點(diǎn)P到直線AQ,BQ的距離相等,若存在,求出點(diǎn)Q坐標(biāo),若不存在,說明理由.
【答案】(1)=;(2)軸上存在點(diǎn),使得點(diǎn)到直線,的距離相等.
【解析】
(1)設(shè)過點(diǎn)的動直線為=,聯(lián)立拋物線的方程,設(shè),,運(yùn)用韋達(dá)定理,結(jié)合向量的數(shù)量積的坐標(biāo)表示,化簡可得,進(jìn)而得到拋物線方程;
(2)軸上假設(shè)存在點(diǎn)符合題意,由題意可得=,運(yùn)用直線的斜率公式和韋達(dá)定理,化簡可得的值,即可判斷存在性.
(1)設(shè)過點(diǎn)的動直線為=,
代入拋物線=,可得=,
設(shè),,
可得=,
由可得==,
解得=,則拋物線的方程為=;
(2)當(dāng)直線變動時(shí),軸上假設(shè)存在點(diǎn)使得點(diǎn)到直線,的距離相等,
由角平分線的判定定理可得為的角平分線,即有=,
由(1)可得=,=,
則,
化為=,
即為=,
化簡可得=,
則軸上存在點(diǎn),使得點(diǎn)到直線,的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高中學(xué)生對數(shù)學(xué)課是否喜愛是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表.
喜愛數(shù)學(xué)課 | 不喜愛數(shù)學(xué)課 | 合計(jì) | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為“喜愛數(shù)學(xué)課與性別”有關(guān);
(2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛數(shù)學(xué)課的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.
(1)求證:平面.
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),若直線是曲線的切線,求的最大值;
(2)設(shè),函數(shù)有兩個(gè)不同的零點(diǎn),求的最大整數(shù)值.(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.現(xiàn)統(tǒng)計(jì)得到相關(guān)統(tǒng)計(jì)情況如下:
甲套設(shè)備的樣本的頻率分布直方圖
乙套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | ||||||
頻數(shù) | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根據(jù)上述所得統(tǒng)計(jì)數(shù)據(jù),計(jì)算產(chǎn)品合格率,并對兩套設(shè)備的優(yōu)劣進(jìn)行比較;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附:
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計(jì)了10月1日7:00-23:00這一時(shí)間段內(nèi)顧客0這一時(shí)間段內(nèi)顧客購買商品人次,統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)顧客購買商品共5000人次顧客購買商品時(shí)刻的頻率分布直方圖如下圖所示,其中時(shí)間段7:00 11:00,11:00 15:00,15:00 ~19:00,19:00~23:00,依次記作[7,11),[11,15),[15,19),[19,23].
(1)求該天顧客購買商品時(shí)刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)現(xiàn)從10月1日在該商場購買商品的顧客中隨機(jī)抽取100名顧客,經(jīng)統(tǒng)計(jì)有男顧客 40人,其中10人購物時(shí)刻在[19,23](夜晚),女顧客60人,其中50人購物時(shí)刻在[7,19)(白天),根據(jù)提供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“男顧客更喜歡在夜晚購物”?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于)收費(fèi)元,續(xù)重元(不足按算). (如:一個(gè)包裹重量為則需支付首付元,續(xù)重元,一共元快遞費(fèi)用)
(1)若你有三件禮物重量分別為,要將三個(gè)禮物分成兩個(gè)包裹寄出(如:合為一個(gè)包裹,一個(gè)包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)對該快遞點(diǎn)近天的每日攬包裹數(shù)(單位:件)進(jìn)行統(tǒng)計(jì),得到的日攬包裹數(shù)分別為件,件,件,件,件,那么從這天中隨機(jī)抽出天,求這天的日攬包裹數(shù)均超過件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,).
(1)當(dāng)(e為自然對數(shù)的底數(shù))時(shí),
(i)若在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(ii)若(),求在上的最大值;
(2)當(dāng)時(shí),,,數(shù)列滿足.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com