【題目】已知函數(shù).

(1)當(dāng)時,若在區(qū)間上的最小值為,求的取值范圍;

(2)若對任意,且恒成立,求的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)求出的零點,通過討論與區(qū)間的關(guān)系,得到其單調(diào)性,找到最小值點,求出最小值,即得的取值范圍;(2)根據(jù)可構(gòu)造函數(shù),題中的條件本質(zhì)上就是給出了函數(shù)單調(diào)遞增,求參數(shù)的范圍,即上恒成立,分類討論即可.

試題解析:

(1)函數(shù)的定義域是.當(dāng)時,

,

,得,所以.

當(dāng),即時,上單調(diào)遞增,所以上的最小值是;

當(dāng)時,上的最小值是,不合題意;

當(dāng)時,上單調(diào)遞減,所以上的最小值是,不合題意,

綜上:.

(2)設(shè),即

只要上單調(diào)遞增即可,而

當(dāng)時,,此時上單調(diào)遞增;

當(dāng)時,只需上恒成立,因為,只要,

則需要,對于函數(shù),過定點,對稱軸,只需

,綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中,假命題是_________ (填序號).

①經(jīng)過定點P(x0y0)的直線不一定都可以用方程yy0k(xx0)表示;

②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用

方程(yy1)(x2x1)=(xx1)(y2y1)來表示;

③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;

④經(jīng)過點Q(0,b)的直線都可以表示為ykxb.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐中,平面,,,,, ,是等腰三角形.

(1)求證:平面平面;

2求側(cè)棱上是否存在點,使得與平面所成角大小為,若存在,求出點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

I)討論函數(shù)的單調(diào)性;

II)若,證明:對任意,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的最小值;

(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,焦點, 為坐標(biāo)原點,直線(不垂直軸)過點且與拋物線交于兩點,直線的斜率之積為.

(1)求拋物線的方程;

(2)若為線段的中點,射線交拋物線于點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:直線與圓有兩個交點;命題:.

(1)若為真命題,求實數(shù)的取值范圍;

(2)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx+φ

0

π

x

Asinωx+φ

0

5

-5

0

1請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx的解析式;

2圖象上所有點向左平行移動個單位長度,得到的圖象,求的圖象離原點O最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),當(dāng)時,其中,是自然對數(shù)的底數(shù)=2.71828.

的值;

時,方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案