分析 (Ⅰ)求出函數(shù)的定義域,然后求解函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)函數(shù)大于0,小于0,即可判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)利用(Ⅰ)通過(guò)f(x)在區(qū)間[0,1]上的單調(diào)性,直接求解函數(shù)的最大值和最小值.
解答 解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?$\frac{3}{2}$,+∞)…(1分)
f′(x)=$\frac{2}{2x+3}$+2x=$\frac{4(x+1)(x+\frac{1}{2})}{2x+3}$,…(4分)
當(dāng)f'(x)>0時(shí),解得-$\frac{3}{2}$<x<-1或x>-$\frac{1}{2}$;…(5分)
當(dāng)f'(x)<0時(shí),解得-1<x<-$\frac{1}{2}$…(6分)
所以函數(shù)f(x)在(-$\frac{3}{2}$,-1),(-$\frac{1}{2}$,+∞)上是增函數(shù),在(-1,-$\frac{1}{2}$)上是減函數(shù)…(8分)
(Ⅱ)因?yàn)閒(x)在[0,1]上是增函數(shù),
所以f(x)max=f(1)=ln5+1,
f(x)min=f(0)=ln3…(12分)
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平面上一定存在直線 | B. | 平面上一定存在曲線 | ||
C. | 曲面上一定不存在直線 | D. | 曲面上一定存在曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com