【題目】根據(jù)我國(guó)頒布的《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定》 :空氣質(zhì)量指數(shù)劃分為、、、、和大于300共六個(gè)等級(jí),對(duì)應(yīng)的空氣質(zhì)量指數(shù)的六個(gè)等級(jí),指數(shù)越大,等級(jí)越高 ,說明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)不大于150時(shí),可以進(jìn)行戶外活動(dòng);當(dāng)空氣質(zhì)量指數(shù)為151及以上時(shí),不適合進(jìn)行旅游等戶外活動(dòng),下表是某市2017年11月中旬的空氣質(zhì)量指數(shù)情況:
時(shí)間 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
142 | 141 | 125 | 249 | 129 | 87 | 68 | 106 | 238 | 270 |
(1)該市某市民在上述10天中隨機(jī)選取1天進(jìn)行戶外活動(dòng),求該市民選取的這一天恰好不適合進(jìn)行戶外活動(dòng)的概率;
(2)一名外地游客計(jì)劃在上述10天中到市連續(xù)旅游2天求這10天中適合他旅游的概率.
【答案】(1) ;(2) .
【解析】試題分析:(1)從上述10天中任選1天,得出構(gòu)成的基本事件共10個(gè),“該市民選取的這一天恰好不適合進(jìn)行戶外活動(dòng)”為事件,則事件包含的基本事件共3個(gè),即可求解相應(yīng)的概率.
(2)從這10天中隨機(jī)選取連續(xù)2天,所構(gòu)成的基本事件共9個(gè),“外地游客在該市適合連續(xù)旅游2天”為事件共5個(gè),利用古典概率即可求解相應(yīng)的概率.
試題解析:
(1)從上述10天中任選1天,所構(gòu)成的基本事件有: ,共10個(gè),
設(shè)“該市民選取的這一天恰好不適合進(jìn)行戶外活動(dòng)”為事件,則事件包含的基本事件有: ,共3個(gè).所以;
(2)從這10天中隨機(jī)選取連續(xù)2天,所構(gòu)成的基本事件有:
,共9個(gè),
設(shè)“外地游客在該市適合連續(xù)旅游2天”為事件,則事件包含的基本事件有:
,共5個(gè),則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污 水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為f(m)=25m0.7(萬元),m表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi)) (萬元),x表示輸送污水管道的長(zhǎng)度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長(zhǎng)為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請(qǐng)解答下列問題(結(jié)果精確到0.1)
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費(fèi)用y與x的函數(shù)關(guān)系 式,并求y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù) ,使 成立,則稱為的不動(dòng)點(diǎn).
(1)當(dāng)時(shí),求的不動(dòng)點(diǎn);
(2)若對(duì)于任意的實(shí)數(shù) 函數(shù) 恒有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上 兩點(diǎn)的橫坐標(biāo)是函數(shù) 的不動(dòng)點(diǎn),且直線 是線段的垂直平分線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域?yàn)?/span>的函數(shù)同時(shí)滿足以下三條:
(。⿲(duì)任意的總有(ⅱ)
(ⅲ)若則有就稱為“A函數(shù)”,下列定義在的函數(shù)中為“A函數(shù)”的有_______________
①;②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,且底面與側(cè)面垂直, , 分別為線段的中點(diǎn), , , ,且.
(1)證明: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人租用一塊土地種植一種瓜類作物,租期5年,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點(diǎn)值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455kg.當(dāng)年產(chǎn)量低于450kg時(shí),單位售價(jià)為12元/kg,當(dāng)年產(chǎn)量不低于450kg時(shí),單位售價(jià)為10元/kg.
(1)求圖中a的值;
(2)以各區(qū)間中點(diǎn)值作為該區(qū)間的年產(chǎn)量,并以年產(chǎn)量落入該區(qū)間的頻率作為年產(chǎn)量取該區(qū)間中點(diǎn)值的概率,求年銷售額X(單位:元)的分布列;
(3)求在租期5年中,至少有2年的年銷售額不低于5000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+1,那么不等式2f(x)﹣1<0的解集是_________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com