已知兩定點A(-2,0),B(2,0),若直線上存在點P,使得|PA|-|PB|=2,則稱該直線為“優(yōu)美直線”,給出下列直線:①y=x+1②y=
3
x+2③y=-x+3④y=-2x-1.其中是“優(yōu)美直線”的序號是( 。
A、①④B、③④C、②③D、①③
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的定義,可求得點P的軌跡方程,從而可利用雙曲線的性質(zhì)結(jié)合新定義“優(yōu)美直線”即可獲得答案.
解答: 解:∵兩定點M(-2,0),N(2,0),直線上存在點P(x,y),使得|PM|-|PN|=2,
∴點P的軌跡是雙曲線,其中2a=2,2c=4,
∴點P的軌跡方程方程為:x2-
y2
3
=1(x≥1),
∴其漸近線方程為:y=±
3
x,
∵①y=x+1經(jīng)過(0,1)且斜率k=1<
3
,
∴該直線與雙曲線x2-
y2
3
=1(x≥1)有交點,
∴該直線是“優(yōu)美直線”;
對于②,∵y=
3
x+2經(jīng)過(0,2)且斜率k=
3
,顯然該直線與其漸近線方程y=
3
x平行,該直線與雙曲線無交點,
∴該直線不是“優(yōu)美直線”,即②不符合;
對于③,∵y=-x+3 經(jīng)過(0,3)且斜率k=-1>-
3
,
∴該直線與雙曲線x2-
y2
3
=1(x≥1)有交點,故③符合;
同理可得,④y=-2x-1的斜率k=-2<-
3
,
∴該直線與雙曲線x2-
y2
3
=1(x≥1)無交點,
綜上所述,①③符合.
故選D.
點評:本題考查雙曲線的概念與性質(zhì),考查其漸近線方程的應(yīng)用,突出轉(zhuǎn)化思想與分析應(yīng)用能力的考查,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(2)=1,且f(x)的導(dǎo)函數(shù)f′(x)>
2
3
,則關(guān)于x的不等式f(x)>
2x
3
-
1
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F是G的真子集,若對任意的x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”,已知函數(shù)f(x)=(
1
2
x(x≤0),若g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式為( 。
A、g(x)=(
1
2
|x|
B、g(x)=2|x|
C、g(x)=log2|x|
D、g(x)=log 
1
2
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD中,各個側(cè)面都是邊長為a的正三角形,E,F(xiàn)分別是SC和AB的中點,則直線EF與底面ABCD所成的角正切值為( 。
A、
5
5
B、
5
4
C、
6
3
D、
2
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合P中的元素都是整數(shù),并且滿足條件:
①P中有正數(shù),也有負(fù)數(shù);
②P中有奇數(shù),也有偶數(shù);
③-1∉P;
④若x,y∈P,則x+y∈P.
下面判斷正確的是(  )
A、0∉P,2∈P
B、0∈P,2∈P
C、0∈P,2∉P
D、0∉P,2∉P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中,我們定義的大小關(guān)系“>”為全體實數(shù)排了一個“序”,類似地,我們在平面向量集V上也可以定義一個稱為“序”的關(guān)系,記為“?”.定義如下:對于任意兩個平面向量
v1
=(a1,b1),
v2
=(a2,b2)(a1,b1,a2,b2∈R)“
v1
?
v2
”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2,且b1>b2”時成立.下面命題為假命題的是( 。
A、(1,0)?(0,1)?(0,0)
B、若
v1
?
v2
,
v2
?
v3
,則
v1
?
v3
C、若
v1
?
v2
,則對于任意
v
∈V,
v1
+
v
?
v2
+
v
D、對于平面向量
v
?(0,0),若
v1
?
v2
,則
v
v1
?
v
v2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
1
x
+
1
x2
)dx=( 。
A、
1
2
B、
1
2
+1n2
1
2
C、-
1
2
+1n2
D、
1
4
+1n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=cosx(x∈[-
π
2
,
π
2
])的圖象與x軸所圍成的圖形中,直線l:x=t(t∈[-
π
2
π
2
])從點A向右平行移動至B,l在移動過程中掃過平面圖形(圖中陰影部分)的面積為S,則S關(guān)于t的函數(shù)S=f(t)的圖象可表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=4n-1,則bk=
1
k
(a1+a2+…+ak)(k∈N*)所確定的數(shù)列{bn}的前n項和為( 。
A、n2
B、n(n+1)
C、n(n+2)
D、n(2n+1)

查看答案和解析>>

同步練習(xí)冊答案