【題目】已知等差數(shù)列中,公差,其前項(xiàng)和為,且滿足:.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)通過(guò)公式構(gòu)造一個(gè)新的數(shù)列.若也是等差數(shù)列,求非零常數(shù);
(Ⅲ)求的最大值.
【答案】(I);(II);(III)
【解析】
試題
(1)由等差數(shù)列的性質(zhì)可得a2+a3=14,解方程組可得a2=5,a3=9,于是可求得首項(xiàng)和公差,從而可得通項(xiàng)公式.(2)由題意得Sn=2n2-n,故,根據(jù)數(shù)列為等差數(shù)列可得2b2=b1+b3,計(jì)算可得.經(jīng)驗(yàn)證可得滿足題意.(3)由(2)可得,故可根據(jù)基本不等式求最值.
試題解析:
(1)∵數(shù)列{an}是等差數(shù)列.
∴a2+a3=a1+a4=14,
由,解得或.
∵公差d>0,
∴a2=5,a3=9.
∴d=a3-a2=4,a1=a2-d=1.
∴.
(2)∵Sn=na1+n(n-1)d=n+2n(n-1)=2n2-n,
∴.
∵數(shù)列{bn}是等差數(shù)列,
∴2b2=b1+b3,
∴2·=+,
解得 (c=0舍去).
∴.
顯然{bn}成等差數(shù)列,符合題意,
∴.
(3)由(2)可得
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
∴f(n)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,E,M分別是AD,PD的中點(diǎn),PE⊥BE,PA=PD=AD=2,AB=.
(1)求證:PB∥平面MAC.
(2)求證:平面MAC⊥平面PBE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通管理部門(mén)為了解機(jī)動(dòng)車(chē)駕駛員(簡(jiǎn)稱(chēng)駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)N為( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和.
【答案】(1)(2)
【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項(xiàng)公式,可得公比,由等比數(shù)列的求和可得首項(xiàng),進(jìn)而得到所求通項(xiàng)公式;(2)求得bn=n,,由裂項(xiàng)相消求和可得答案.
(1)等比數(shù)列的前項(xiàng)和為,公比,①,
②.
②﹣①,得,則,
又,所以,
因?yàn)?/span>,所以,
所以,
所以;
(2),
所以前項(xiàng)和.
【點(diǎn)睛】
裂項(xiàng)相消法適用于形如(其中是各項(xiàng)均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項(xiàng)相消法求和,常見(jiàn)的有相鄰兩項(xiàng)的裂項(xiàng)求和,還有一類(lèi)隔一項(xiàng)的裂項(xiàng)求和,如或.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的圖象上有兩點(diǎn),.函數(shù)滿足,且.
(1)求證:;
(2)求證:;
(3)能否保證和中至少有一個(gè)為正數(shù)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上年度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | |
保費(fèi) |
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出的概率;
(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列兩個(gè)命題:命題p1:a,b∈(0,+∞),當(dāng)a+b=1時(shí), + =4;命題p2:函數(shù)y=ln 是偶函數(shù).則下列命題是真命題的是( )
A.p1∧p2
B.p1∧(¬p2)
C.(¬p1)∨p2
D.(¬p1)∨(¬p2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一段時(shí)間內(nèi),分5次測(cè)得某種商品的價(jià)格x(萬(wàn)元)和需求量y(t)之間的一組數(shù)據(jù)為:
1 | 2 | 3 | 4 | 5 | |
價(jià)格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)畫(huà)出散點(diǎn)圖;
(2)求出y對(duì)x的線性回歸方程;
(3)如價(jià)格定為1.9萬(wàn)元,預(yù)測(cè)需求量大約是多少?(精確到0.01 t).
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB=60°,AC∩BD=O,點(diǎn)P在底面的射影為點(diǎn)O,PO=3,點(diǎn)E為線段PD中點(diǎn).
(1)求證:PB∥平面AEC;
(2)若點(diǎn)F為側(cè)棱PA上的一點(diǎn),當(dāng)PA⊥平面BDF時(shí),試確定點(diǎn)F的位置,并求出此時(shí)幾何體F﹣BDC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)50噸、160噸和200噸,如果A產(chǎn)品的利潤(rùn)為300元/噸,B產(chǎn)品的利潤(rùn)為200元/噸,則該顏料公司一天之內(nèi)可獲得的最大利潤(rùn)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com