已知直線,圓O:=36(O為坐標(biāo)原點(diǎn)),橢圓C:=1(a>b>0)的離心率為e=,直線l被圓O截得的弦長(zhǎng)與橢圓的長(zhǎng)軸長(zhǎng)相等。
(I)求橢圓C的方程;(II)過(guò)點(diǎn)(3,0)作直線l,與橢圓C交于A,B兩點(diǎn)設(shè)(O是坐標(biāo)原點(diǎn)),是否存在這樣的直線l,使四邊形為ASB的對(duì)角線長(zhǎng)相等?若存在 ,求出直線l的方程,若不存在,說(shuō)明理由。

解:(Ⅰ)∵圓心O到直線的距離為,
直線l被圓O截得的弦長(zhǎng)2a=,∴a=2,
,解得,
∴橢圓C的方程為:;                             ………4分
(Ⅱ)∵,∴四邊形OASB是平行四邊形.
假設(shè)存在這樣的直線l,使四邊形OASB的對(duì)角線長(zhǎng)相等,
則四邊形OASB為矩形,因此有,
設(shè)A(x1,y2),B(x2,y2),則.                  ………7分
直線l的斜率顯然存在,設(shè)過(guò)點(diǎn)(3,0)的直線l方程為:
,得,     
,即.
………9分

,
得:,滿足Δ>0.     ………12分
故存在這樣的直線l,其方程為.              ………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線的距離為,過(guò)原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.
(1) 求橢圓的方程;
(2) 是否存在過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e,若橢圓上存在點(diǎn)P,使得,則該離心率e的取值范圍是__________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,橢圓C以A,B為焦點(diǎn)且過(guò)點(diǎn)N.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓C方程;
(2)若點(diǎn)E滿足,問是否存在不平行AB的直線L與橢圓C交于P,Q兩點(diǎn),且|PE|=|QE|,若存在,求出直線L與AB夾角的范圍;若不存在,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓.,分別為橢圓的左,右焦點(diǎn),, 分別為橢圓的左,右頂點(diǎn).過(guò)右焦點(diǎn)且垂直于軸的直線與橢圓在第一象限的交點(diǎn)為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線與橢圓交于,兩點(diǎn), 直線交于點(diǎn).當(dāng)直線變化時(shí), 點(diǎn)是否恒在一條定直線上?若是,求此定直線方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,一個(gè)焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線交橢圓,兩點(diǎn),若點(diǎn),都在以點(diǎn)為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)且兩兩互相垂直的直線分別交橢圓。(13分)
(1)求的最值
(2)求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn), 為橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;
(Ⅲ)為過(guò)且垂直于軸的直線上的點(diǎn),若,求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

. (本小題滿分12分)
如圖,設(shè)拋物線C1:的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F2為焦點(diǎn),離心率的橢圓C2與拋物線C1在X軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(I)當(dāng)m =1時(shí),求橢圓C2的方程;
(II)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案