【題目】居民消費價格指數(shù),簡稱CPI,是一個反映居民家庭一般所購買的消費品和服務(wù)項目價格水平變動情況的宏觀經(jīng)濟指標(biāo).一般來說,CPI的高低直接影響著國家的宏觀經(jīng)濟調(diào)控措施的出臺與力度,下圖是國家統(tǒng)計局發(fā)布的我國2009年至2018年這十年居民消費價格指數(shù)的折線圖.

則下列對該折線圖分析正確的是(

A.這十年的居民消費價格指數(shù)的中位數(shù)為2013年的居民消費價格指數(shù)

B.這十年的居民消費價格指數(shù)的眾數(shù)為2015年的居民消費價格指數(shù)

C.2009年~2012年這4年居民消費價格指數(shù)的方差小于2015年~2018年這4年居民消費價格指數(shù)的方差

D.2011年~2013年這3年居民消費價格指數(shù)的平均值大于2016年~2018年這3年居民消費價格指數(shù)的平均值

【答案】D

【解析】

結(jié)合圖象,從低到高依次寫出各點的橫坐標(biāo)(即年份),由此可判斷A選項,觀察各點的縱坐標(biāo),由此可判斷B選項與D選項;根據(jù)方差的定義,數(shù)據(jù)上下波動的幅度越小,方差越小,從而可判斷C選項.

解:結(jié)合圖象,從低到高各點的橫坐標(biāo)依次為2009,2015,20142017),2016,20182013,2012,2010,2011,則A錯;

觀察各點的縱坐標(biāo),可得2014年與2017年的數(shù)據(jù)相等,其余各年的數(shù)據(jù)均不相等,則B錯;

同時2011年~2013年這3年居民消費價格指數(shù)均大于2016年~2018年這3年居民消費價格指數(shù),則D對;

根據(jù)方差的定義,數(shù)據(jù)上下波動的幅度越小,方差越小,明顯發(fā)現(xiàn)2015年~2018年這4年居民消費價格指數(shù)更穩(wěn)定,則C錯;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關(guān)于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計算公式是:確認(rèn)病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計,確認(rèn)病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué),科赫曲線是比較典型的分形圖形,1904年瑞典數(shù)學(xué)家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復(fù)上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設(shè)圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,…,,…,設(shè)的周長為,則為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是等腰梯形,,是等邊三角形,點上,且

1)證明://平面

2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出以下四個命題:

的圖象關(guān)于軸對稱;

上是減函數(shù);

是周期函數(shù);

上恰有兩個零點.

其中真命題的序號是______.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面平面,

1)若三棱錐的體積為1,求

2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體ABCD中,ABCBCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)前后,中國爆發(fā)新型冠狀病毒(SARS-Cov-2)如圖所示為124日至216日中國內(nèi)地(除湖北以外的)感染新型冠狀病毒新增人數(shù)的折線圖,為了預(yù)測分析數(shù)據(jù)的變化規(guī)律,建立了與時間變量的不同時間段的兩個線性回歸模型.根據(jù)124日至23日的數(shù)據(jù)(時間變量的值依次為1,2,3,4,56,7,89,10,11)建立模型①:;根據(jù)24日至216日的數(shù)據(jù)(時間變量的值依次為12,1314,1516,17,18,19,20,21,22,23,24)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出兩個回歸直線方程;(計算結(jié)果取整數(shù))

2)中國政府為了人民的生命安全,聽取專家意見,了解了病毒信息,并迅速做出一系列的隔離防護措施,但新冠狀病毒在世界范圍內(nèi)爆發(fā)時,某些歐美國家采取放任的態(tài)度,不治療、不隔離、不檢測,甚至不公布,請你用以上數(shù)據(jù)說明采取一系列措施的必要性,不采取措施的后果.

參考數(shù)據(jù):,,

參考公式:.

查看答案和解析>>

同步練習(xí)冊答案