設(shè)函數(shù)f(x)=sin(2ωx+
π
6
)+2sin2ωx(ω>0),其圖象的兩個相鄰對稱中心的距離為
π
2

(1)求函數(shù)f(x)的解析式;
(2)若△ABC的內(nèi)角為A,B,C,所對的邊分別為a,b,c(其中b<c),且f(A)=2,a=
7
,△ABC面積為
3
2
3
,求b,c的值.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)中的恒等變換應(yīng)用,余弦定理
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(1)通過兩角和與差的三角函數(shù)化簡函數(shù)的表達式為一個角的一個三角函數(shù)的形式,圖象的兩個相鄰對稱中心的距離為
π
2
.求出函數(shù)的周期,然后求函數(shù)f(x)的解析式;
(2)利用解析式通過f(A)=2,求出A,通過a=
7
,△ABC面積為
3
2
3
,以及余弦定理即可求b,c的值.
解答: 解:(1)f(x)=sin(2ωx+
π
6
)+1-cos2ωx

=
3
2
sin2ωx-
1
2
cos2ωx+1

=sin(2ωx-
π
6
)+1
…(3分)
由題意知T=π,∴
,ω=1,
∴函數(shù)的解析式為:f(x)=sin(2x-
π
6
)+1
…(6分)
(2)由f(A)=2,得sin(2A-
π
6
)=1
,0<A<π,
A=
π
3

3
3
2
=S△ABC=
1
2
bcsin
π
3
=
3
4
bc
即bc=6,…(8分)
又a2=b2+c2-2bccosA,將a=
7
,A=
π
3
代入得b2+c2=13,…(10分)
又b<c解
bc=6
b2+c2=13
b=2
c=3
…(12分)
點評:本題考查兩角和與差的三角函數(shù),函數(shù)的解析式的求法,余弦定理的應(yīng)用,三角形的面積的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=-2,且對任意的n∈N*有2an+1=1+2an,則數(shù)列{an}前10項的和為( 。
A、5
B、10
C、
5
2
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點 (
3
3
2
)到它的兩個焦點的距離之和為4
(Ⅰ)求橢圓的方程:
(Ⅱ)A,B是橢圓上關(guān)于x軸對稱的兩點,設(shè)D(4,0),連接DB交橢圓于另一點F,證明直線AE恒過x軸上的定點P;
(Ⅲ)在(Ⅱ)的條件下,過點P的直線與橢圓交于M,N兩點,求
OM
ON
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=-
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,+∞)時,函數(shù)y=f(x)圖象上的點都在
x≥0
y-x≤0
所表示的平面區(qū)域內(nèi),不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點,E是線段BC1上一點,且BE=
1
3
BC1
(1)求證:GE∥側(cè)面AA1B1B;
(2)求平面B1GE與底面ABC所成銳二面角的正切值;
(3)在直線AG上是否存在點T,使得B1T⊥AG?若存在,指出點T的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
3
5
,an+1=
3an
2an+1
,n=1,2,…
(1)求證:{
1
an
-1}是等比數(shù)列,并求出{an}的通項公式;
(2)證明:對任意的x>0,an
1
1+x
-
1
(1+x)2
2
3n
-x),n=1,2,…
(3)證明:n-
2
5
≥a1+a2+…+an
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的準線與x軸交于點M(-1,0).
(Ⅰ)求拋物線的方程,并寫出焦點坐標;
(Ⅱ)是否存在過焦點的直線AB(直線與拋物線交于點A,B),使得三角形MAB的面積S△MAB=4
2
?若存在,請求出直線AB的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(4,-3),向量
b
=(2,1),若
a
-t
b
b
的夾角為45°,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,若p=3,則輸出的S=
 

查看答案和解析>>

同步練習(xí)冊答案