已知數(shù)列{an}為等差數(shù)列,公差為d,若<-1,且它的前n項和Sn有最大值,則使得Sn<0的n的最小值為( )
(A)11(B)19(C)20(D)21
C
【解析】【思路點撥】解答本題首先要搞清條件“<-1”及“Sn有最大值”如何使用,從而列出關于a1,d的不等式組,求出的取值范圍,進而求出使得Sn<0的n的最小值,或者根據(jù)等比數(shù)列的性質(zhì)求解.
解:方法一:由題意知d<0,a10>0,a11<0, a10+a11<0,
由得-<<-9.
∵Sn=na1+d=n2+(a1-)n,
由Sn=0得n=0或n=1-.
∵19<1-<20,
∴Sn<0的解集為{n∈N*|n>1-},
故使得Sn<0的n的最小值為20.
方法二:由題意知d<0,a10>0,a11<0,a10+a11<0,
由a10>0知S19>0,由a11<0知S21<0,
由a10+a11<0知S20<0,故選C.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十三第三章第七節(jié)練習卷(解析版) 題型:解答題
在△ABC中,角A,B,C所對的邊分別為a,b,c,且cosA=.
(1)求sin2 -cos 2A的值.
(2)若a=,求bc的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十第五章第一節(jié)練習卷(解析版) 題型:解答題
數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十第五章第一節(jié)練習卷(解析版) 題型:選擇題
已知數(shù)列{an}中,a1=1,=+3(n∈N*),則a10=( )
(A)28(B)33(C)(D)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十四第五章第五節(jié)練習卷(解析版) 題型:填空題
設數(shù)列{an}中,a1=2,an+1=an+n+1,則通項an= .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十四第五章第五節(jié)練習卷(解析版) 題型:選擇題
等差數(shù)列{an}的公差為3,若a2, a4,a8成等比數(shù)列,則a4=( )
(A)8 (B)10 (C)12 (D)16
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十六第六章第二節(jié)練習卷(解析版) 題型:選擇題
已知不等式xy≤ax2+2y2,若對任意x∈[1,2]及y∈[2,3],該不等式恒成立,則實數(shù)a的范圍是( )
(A)-≤a≤-1 (B)-3≤a≤-1
(C)a≥-3 (D)a≥-1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十八第六章第四節(jié)練習卷(解析版) 題型:選擇題
已知a>0,b>0,a+b=2,則+的最小值是( )
(A) (B)4 (C) (D)5
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)三十九第六章第五節(jié)練習卷(解析版) 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)(2)(3)(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5).
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關系式,并根據(jù)你得到的關系式求f(n)的關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com