已知數(shù)列{an}中,an=
2011-4n
2010-4n
,則數(shù)列{an}中的最大項為第
 
項.
考點:數(shù)列的函數(shù)特性
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:變形an=
2011-4n
2010-4n
=1+
1
2010-4n
,利用其單調(diào)性即可得出.
解答: 解:an=
2011-4n
2010-4n
=1+
1
2010-4n
,
當n∈[1,502]時,an單調(diào)遞增;當n≥503時,an單調(diào)遞減.
因此當n=502時,數(shù)列{an}取得最大值.
故答案為:502.
點評:本題考查了數(shù)列的單調(diào)性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,圓C:(x+2)2+y2=36,P是圓C上的任意一動點,A點坐標為(2,0),線段PA的垂直平分線l與半徑CP交于點Q.
(1)求點Q的軌跡G的方程;
(2)已知B,D是軌跡G上不同的兩個任意點,M為BD的中點.①若M的坐標為M(2,1),求直線BD所在的直線方程;②若BD不經(jīng)過原點,且不垂直于x軸,點O為軌跡G的中心.
求證:直線BD和直線OM的斜率之積是常數(shù)(定值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(n,an)(n∈N*)是函數(shù)f(x)=
2x+4
x
圖象上的點,數(shù)列{bn}滿足bn=an+λn,若數(shù)列{bn}是遞增數(shù)列,則正實數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x||x-3|+|x-4|<a},B={x||x2-6x+5≤0},若A∩B=B,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AD
BC
=0,|
AB
|=5,|
BC
|=10,
BD
=
2
3
DC
,點P滿足
AP
=m
AB
+(1-m)
AC
,則
AP
AD
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,4},B={m,4,7},若A∩B={1,4},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,AD=1,∠BAD=60°,
BC
=3
BF
.若
BD
AF
=-3,則
AB
的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在二面角α-AB-β的棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,CD=2
17
,則直線CD與平面α所成角的正弦值為( 。
A、
697
34
B、
3
51
64
C、
697
64
D、
3
51
34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ的中心在原點,焦點在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點F.
(1)求橢圓Γ的方程;
(2)設(shè)點F關(guān)于x軸的對稱點為F′,過F′作兩條直線l1和l2,其斜率分別為k、k′,滿足k>0,k+k′=0,它們分別是橢圓Γ的上半部分相交于G,H兩點,與x軸相交于A,B兩點,使得|GH|=
16
5
,求證:△ABF′的外接圓過點F;
(3)設(shè)拋物線C的準線為l,P,Q是拋物線上的兩個動點,且滿足∠PFQ=
π
2
,線段PQ的中點為M,點M在l上的投影為N,求
|MN|
|PQ|
的最大值.

查看答案和解析>>

同步練習冊答案