【題目】如圖橢圓的上下頂點為A、B,直線: ,點P是橢圓上異于點A、B的任意一點,連結AP并延長交直線于點N,連結BP并延長交直線于點M,設AP、BP所在直線的斜率分別為,若橢圓的離心率為,且過點,(1)求的值,并求最小值;(2)隨著點P的變化,以MN為直徑的圓是否恒過定點,若過定點,求出該定點坐標;若不過定點,請說明理由。
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中, ,頂點在底面 上的射影恰為點 ,且.
(1)求棱 與所成的角的大;
(2)在棱 上確定一點,使,并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機選一個數(shù),若兩數(shù)之和為偶數(shù),則甲先停靠;若兩數(shù)之和為奇數(shù),則乙先?,這種規(guī)則是否公平?請說明理由.
(2)根據(jù)以往經驗,甲船將于早上到達,乙船將于早上到達,請應用隨機模擬的方法求甲船先?康母怕,隨機數(shù)模擬實驗數(shù)據(jù)參考如下:記, 都是之間的均勻隨機數(shù),用計算機做了100次試驗,得到的結果有12次滿足,有6次滿足.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于、兩點,當時, 點在軸上的射影為。連結并延長分別交于、兩點,連接; 與的面積分別記為, ,設.
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形, , .
(1)證明: ;
(2)若點在平面內的射影,求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心在直線: 上,與直線: 相切,且截直線: 所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點是否存在直線,使以被圓截得弦為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對稱軸方程;
(II)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內角A,B,C的對邊,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過原點的動直線與圓相交于不同的兩點.
(1)求線段的中點的軌跡的方程;
(2)是否存在實數(shù),使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com