【題目】已知數(shù)列的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)構(gòu)成等差數(shù)列,是的前項(xiàng)和,且,.
(1)若數(shù)陣中從第3行開(kāi)始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;
(2)設(shè),當(dāng)時(shí),對(duì)任意,不等式恒成立,求的取值范圍.
【答案】(1)160;(2)或.
【解析】
試題(I)由等差數(shù)列{bn}滿足b1=a1=1,S5=15.求出數(shù)列的公差后,可得數(shù)列的通項(xiàng)公式,結(jié)合數(shù)陣中從第三行開(kāi)始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,a9=16,可求出公比,進(jìn)而求出a50的值;
(Ⅱ)由(1)求出Sn的表達(dá)式,利用裂項(xiàng)相消法求出Tn的表達(dá)式,進(jìn)而將不等式恒成立問(wèn)題,轉(zhuǎn)化為最值問(wèn)題,利用導(dǎo)數(shù)法,可得答案.
試題解析:
(1)設(shè)等差數(shù)列的公差為,∵,,
∴,.
∴,
設(shè)從第3行起,每行的公比都是,且,,,.
,故是數(shù)陣中第10行的第5個(gè)數(shù).
故.
(2)∵,
∴
;
令,
則
當(dāng)時(shí),,在上為減函數(shù),
∴為遞減數(shù)列,的最大值為.
∴不等式變?yōu)?/span>恒成立,設(shè),,
則,即,解得或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的圖像在點(diǎn)處的切線方程.
(Ⅱ)若且對(duì)任意恒成立,求的最大值;
(Ⅲ)當(dāng)時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)甲、乙兩名自行車(chē)賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫(huà)出莖葉圖,由莖葉圖你能獲得哪些信息?
(2)分別求出甲、乙兩名自行車(chē)賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰(shuí)參加比賽比較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立坐標(biāo)系用斜二測(cè)畫(huà)法畫(huà)正△ABC的直觀圖,其中直觀圖不是全等三角形的一組是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知多面體的直觀圖(圖1)和它的三視圖(圖2),
(1)在棱上是否存在點(diǎn),使得平面?若存在,求的值,并證明你的結(jié)論;若不存在,說(shuō)明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中的人使用微信,其中每天使用微信時(shí)間少于一小時(shí)的有60人,其余的員工每天使用微信時(shí)間不少于一小時(shí),若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中是青年人.若規(guī)定:每天使用微信時(shí)間不少于一小時(shí)為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,完成列聯(lián)表:
青年人 | 中年人 | 合計(jì) | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計(jì) |
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
0.010 | 0.001 | |
6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷(xiāo)售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸.
(1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)在一個(gè)生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時(shí)可獲得利潤(rùn)最大,最大利潤(rùn)是多少?
(用線性規(guī)劃求解要畫(huà)出規(guī)范的圖形及具體的解答過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com