【題目】有10所學(xué)校,每所都選派若干名男生和若干名女生舉行跳棋比賽,同一學(xué)校的選手不比賽,不同學(xué)校的選手不論男女在兩人之間都要進行一場比賽. 在兩個男生或兩個女生之間的比賽總局數(shù)與男生和女生之間的比賽總局數(shù)與男生和女生之間的比賽總局數(shù)至多相差1,而男生的總?cè)藬?shù)和女生的總?cè)藬?shù)也至多相差1. 求證:至少有7所學(xué)校選派的男生和女生人數(shù)相同.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列對應(yīng)是從集合A到集合B的映射的是( )
A.集合是圓是三角形,對應(yīng)關(guān)系f:每一個圓都對應(yīng)它的內(nèi)接三角形
B.集合對應(yīng)關(guān)系
C.集合,對應(yīng)關(guān)系f:求絕對值
D.集合,對應(yīng)關(guān)系f:開平方
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個等腰直角三角板垂直于平面,有一條長為7的細線,其兩端分別位于處,現(xiàn)用鉛筆拉緊細線,在平面上移動.
圖① 圖②
(1)圖②中的的長為多少時,平面?并給出證明.
(2)在(1)的情形下,求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的實軸長為4,焦距為.
(1)求橢圓C的標準方程;
(2)設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N(異于橢圓的左頂點),設(shè)點Q是x軸上的一個動點.直線QM,QN的斜率分別為,,試問:是否存在點Q,使得為定值?若存在.求出點Q的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解地區(qū)足球特色學(xué)校的發(fā)展狀況,某調(diào)查機構(gòu)得到如下統(tǒng)計數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學(xué)校(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算與的相關(guān)系數(shù),并說明與的線性相關(guān)性強弱(已知:,則認為與線性相關(guān)性很強;,則認為與線性相關(guān)性一般;,則認為與線性相關(guān)性較弱);
(2)求關(guān)于的線性回歸方程,并預(yù)測地區(qū)2019年足球特色學(xué)校的個數(shù)(精確到個).
本題參考公式和數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線 (a,b>0)的左右焦點分別為F1(-c,0),F2(c,0),左頂點為A,左準線為l,過F1作直線交雙曲線C左支于P,Q兩點,則下列命題正確的是( )
A.若PQ⊥x軸,則△PQF2的周長為
B.連PA交l于D,則必有QD//x軸
C.若PQ中點為M,則必有PQ⊥MF2
D.連PO交雙曲線C右支于點N,則必有PQ//NF2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有_______.(寫出所有正確說法的序號)
①在中,若,則;
②在中,若,則是銳角三角形;
③在中,若,則;
④若是等差數(shù)列,其前項和為,則三點共線;
⑤等比數(shù)列的前項和為,若對任意的,點均在函數(shù)(且,均為常數(shù))的圖象上,則的值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com