已知A(1,3),B(5,-2),在x軸上有一點P,若||AP|-|BP||最大,則P點坐標(biāo)是______.
設(shè)B關(guān)于x軸的對稱點為C
∵B的坐標(biāo)為(5,-2),∴C坐標(biāo)為(5,2)
延長AC交x軸于點P0,可得
當(dāng)P與P0不重合時,
在△PAC中,||AP|-|CP||<|AC|=||AP0|-|CP0||
從而得出||AP|-|BP||=||AP|-|CP||<||AP0|-|CP0||
當(dāng)P與P0重合時,||AP|-|BP||=||AP0|-|CP0||=|AC|
∴當(dāng)動點P與P0重合時,||AP|-|BP||最大,最大值為A、C的距離
直線AC方程為
y-3
2-3
=
x-1
5-1
,化簡得y=-
1
4
x+
13
4

令y=0,得x=13,可得P0的坐標(biāo)為(13,0)
故答案為:(13,0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知l1:x+my+6=0,l2:(m-2)x+3y+m=0,求滿足下列條件的m的值:
(1)l1⊥l2
(2)l1l2
(3)l1,l2重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(  )
A.經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示
C.不經(jīng)過原點的直線都可以用方程
x
a
+
y
b
=1
表示
D.經(jīng)過任意兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩直線ax+y-4=0與x-y-2=0相交于第一象限,則實數(shù)a的取值范圍是(  )
A.-1<a<2B.a(chǎn)>-1C.a(chǎn)<2D.a(chǎn)<-1或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點A(-2,3),B(3,2),若直線ax+y+2=0與線段AB沒有交點,則a的取值范圍是( 。
A.(-∞,-
5
2
]∪[
4
3
,+∞)
B.(-
4
3
,
5
2
C.[-
5
2
4
3
]
D.(-∞,-
4
3
]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點A(1,1),B(2,2),C(4,0),D(
12
5
,
16
5
),點P在線段CD垂直平分線上,求:
(1)線段CD垂直平分線方程;
(2)|PA|2+|PB|2取得最小值時P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若不全為零的實數(shù)a,b,c成等差數(shù)列,點P(-1,-2)在動直線l:ax+by+c=0上的射影為M,點N(0,3),則線段MN長度的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線被圓截得的弦長為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓C:x2+y2+2x-4y+3=0關(guān)于直線2ax+by+6=0對稱,則由點M(a,b)向圓所作的切線長的最小值是(  )
A.2B.3C.4D.6

查看答案和解析>>

同步練習(xí)冊答案