【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最小值

(2)令是函數(shù)圖象上任意兩點,且滿足求實數(shù)的取值范圍;

(3)若,使成立,求實數(shù)的最大值.

【答案】(1)時,;當時,.2(3).

【解析】

試題分析:(1)先求導數(shù),再求導函數(shù)零點,根據零點與定義區(qū)間位置關系分類討論函數(shù)單調性:當時,上單調遞增,當時,在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù),最后根據單調性確定函數(shù)最小值2先轉化不等式不妨取,則,即恒成立,即上單調遞增,然后利用導數(shù)研究函數(shù)單調性:恒成立.最后利用變量分離轉化為對應函數(shù)最值,求參數(shù).(3)不等式有解問題與恒成立問題一樣,先利用變量分離轉化為對應函數(shù)最值,的最大值,再利用導數(shù)求函數(shù)的最值,這要用到二次求導,才可確定函數(shù)單調性:上單調遞增,進而確定函數(shù)最值

試題解析:解(1),令,則

時,上單調遞增,

的最小值為;

時,在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù),

的最小值為.

綜上,當時,;當時,.

(2),對于任意的,不妨取,則,

則由可得,

變形得恒成立,

,

上單調遞增,

恒成立,

恒成立.

,當且僅當時取

.

(3),

.

,使得成立.

,則,

,則由 可得(舍)

,則上單調遞減;

,則上單調遞增.

上恒成立.

上單調遞增.

,即.

實數(shù)的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體,,,均垂直于平面,,,

(1)證明:⊥平面

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社會機構為了調查對手機游戲的興趣與年齡的關系,通過問卷調查,整理數(shù)據得如下列聯(lián)表:

1)根據列聯(lián)表,能否有99.9%的把握認為對手機游戲的興趣程度與年齡有關?

2)若已經從40歲以下的被調查者中用分層抽樣的方式抽取了5名,現(xiàn)從這5名被調查者中隨機選取3名,求這3名被調查者中恰有1名對手機游戲無興趣的概率.

附:

參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某沿海地區(qū)計劃鋪設一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個燈塔處,在A地用測角器測得,在A地正西方向4km的點C處,用測角器測得.擬定鋪設方案如下:在岸MN上選一點P,先沿線段AP在地下鋪設,再沿線段PB在水下鋪設.預算地下、水下的電纜鋪設費用分別為2萬元/km4萬元/km,設,,鋪設電纜的總費用為萬元.

1)求函數(shù)的解析式;

2)試問點P選在何處時,鋪設的總費用最少,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中無理數(shù).

(Ⅰ)若函數(shù)有兩個極值點,的取值范圍;

(Ⅱ)若函數(shù)的極值點有三個,最小的記為最大的記為,的最大值為的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;

(2)設點的極坐標為,點在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調性;

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內恒成立(e=2.718…為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,是等差數(shù)列,且.

I)求的通項公式;

II)設數(shù)列滿足,求;

III)對任意正整數(shù),不等式成立,求正數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案