已知數(shù)列{xn}中,x1,x5是方程log22x-8log2x+12=0的兩根,等差數(shù)列{yn}滿足yn=log2xn,且其公差為負數(shù),
(1)求數(shù)列{yn}的通項公式;
(2)證明:數(shù)列{xn}為等比數(shù)列;
(3)設數(shù)列{xn}的前n項和為Sn,若對一切正整數(shù)n,Sn<a恒成立,求實數(shù)a的取值范圍.

解:(1)∵x1,x5是方程log22x-8log2x+12=0的兩根,
∴l(xiāng)og2x1+log2x5=8,log2x1•log2x5=12,
∵等差數(shù)列{yn}滿足yn=log2xn,且其公差為負數(shù),
∴l(xiāng)og2x1=6,log2x5=2.
y1=log2x1=6,y5=log2x5=2,yn=7-n.
(2)∵yn=log2xn=7-n,yn+1=log2xn+1=6-n
,
∴數(shù)列{xn}為等比數(shù)列.
(3)
故所求a的取值范圍為a≥128.
分析:(1)由x1,x5是方程log22x-8log2x+12=0的兩根,等差數(shù)列{yn}滿足yn=log2xn,且其公差為負數(shù),能夠推導出y1=log2x1=6,y5=log2x5=2,yn=7-n.
(2)由yn=log2xn=7-n,yn+1=log2xn+1=6-n,知,由此能夠證明數(shù)列{xn}為等比數(shù)列.
(3),由此能求出a的取值范圍.
點評:本題考查通項公式的求法、等比數(shù)列的證明和實數(shù)a的取值的求法,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn}中,x1=1,xn+1=1+
xn
p+xn
(n∈N*,p是正常數(shù))

(Ⅰ)當p=2時,用數(shù)學歸納法證明xn
2
(n∈N*)

(Ⅱ)是否存在正整數(shù)M,使得對于任意正整數(shù)n,都有xM≥xn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高斯函數(shù)[x]表示不超過x的最大整數(shù),如[-2]=-2,[
2
]=1,已知數(shù)列{xn}中,x1=1,xn=xn-1+1+3{[
n-1
5
]-[
n-2
5
]}(n≥2),則x2013=
3219
3219

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn}中,x1,x5是方程log22x-8log2x+12=0的兩根,等差數(shù)列{yn}滿足yn=log2xn,且其公差為負數(shù),
(1)求數(shù)列{yn}的通項公式;
(2)證明:數(shù)列{xn}為等比數(shù)列;
(3)設數(shù)列{xn}的前n項和為Sn,若對一切正整數(shù)n,Sn<a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{xn}中,數(shù)學公式
(Ⅰ)當p=2時,用數(shù)學歸納法證明數(shù)學公式
(Ⅱ)是否存在正整數(shù)M,使得對于任意正整數(shù)n,都有xM≥xn

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省揚州市高三(上)期末數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列{xn}中,
(Ⅰ)當p=2時,用數(shù)學歸納法證明
(Ⅱ)是否存在正整數(shù)M,使得對于任意正整數(shù)n,都有xM≥xn

查看答案和解析>>

同步練習冊答案