【題目】已知數(shù)列和滿足:,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)在等式兩邊同時除以,可得出,利用等差數(shù)列的定義可證明出數(shù)列為等差數(shù)列,求出數(shù)列的通項公式,可得出數(shù)列的通項公式;
(2)先求出的值,由時,由,可得出,兩式相除可得出的表達(dá)式,再對是否滿足在的表達(dá)式,即可得出數(shù)列的通項公式,再利用等比數(shù)列的求和公式求出;
(3)令,利用數(shù)列的單調(diào)性求出滿足的最大整數(shù)的值為,即可得出結(jié)論.
(1)由,,
兩邊除以,得,即,所以,數(shù)列為等差數(shù)列.
,所以,;
(2)當(dāng)時,.
對任意的,,則;
當(dāng)時,由可得,
兩式相除得,
滿足,所以,對任意的,,,
即數(shù)列是公比為的等比數(shù)列,且首項為,因此,;
(3),令,即,即,
構(gòu)造數(shù)列,則,
當(dāng)時,則有,即;
當(dāng)時,;
當(dāng)時,,即,可得.
所以,數(shù)列最大項的值為,又,,
當(dāng)時,.
所以,當(dāng)時,,此時;當(dāng)時,,此時.
綜上所述,數(shù)列中,最大,因此,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是( )
(1)是的極小值點;
(2)函數(shù)有且只有1個零點;
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的方程為,過拋物線上一點作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足:
(1)求拋物線的焦點坐標(biāo)和準(zhǔn)線方程;
(2)當(dāng)時,若點的坐標(biāo)為,求為鈍角時點的縱坐標(biāo)的取值范圍;
(3)設(shè)直線上一點,滿足,證明線段的中點在軸上;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中三年級有AB兩個班,各有50名同學(xué),這兩個班參加能力測試,成績統(tǒng)計結(jié)果如表:
AB班成績的頻數(shù)分布表
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
A班頻數(shù) | 4 | 8 | 23 | 9 | 6 |
B班頻數(shù) | 7 | 12 | 13 | 10 | 8 |
(1)試估計AB兩個班的平均分;
(2)統(tǒng)計學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M.
分別求這兩個班學(xué)生成績的M總值,并據(jù)此對這兩個班的總體水平作簡單評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓:相切于點
(1)求橢圓與圓的方程;
(2)過點引兩條互相垂直的兩直線與兩曲線分別交于點與點(均不重合).若為橢圓上任一點,記點到兩直線的距離分別為,求的最大值,并求出此時的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和;
(3)設(shè)(),記數(shù)列的前n項和為,問:是否存在正整數(shù),對一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的中心為,一個方向向量為的直線與只有一個公共點
(1)若且點在第二象限,求點的坐標(biāo);
(2)若經(jīng)過的直線與垂直,求證:點到直線的距離;
(3)若點、在橢圓上,記直線的斜率為,且為直線的一個法向量,且求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點E,F分別是棱長為2的正方體的棱AB,的中點.如圖,以C為坐標(biāo)原點,射線CDCB分別是x軸y軸z軸的正半軸,建立空間直角坐標(biāo)系.
(1)求向量與的數(shù)量積;
(2)若點M,N分別是線段與線段上的點,問是否存在直線MN,平面ABCD?若存在,求點M,N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,傾斜角為a的直線經(jīng)過拋物線的焦點F,且與拋物線交于A、B兩點.
(1)求拋物線的焦點F的坐標(biāo)及準(zhǔn)線的方程;
(2)若a為銳角,作線段AB的垂直平分線m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com