(2013•肇慶一模)下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為( �。�
分析:根據(jù)y=x-1=
1
x
在區(qū)間(0,+∞)上單調(diào)遞減,得A項(xiàng)不符合題意;根據(jù)y=log2x的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),得y=log2x不是偶函數(shù),得B項(xiàng)不符合題意;根據(jù)y=-x2的圖象是開(kāi)口向下且關(guān)于x=0對(duì)稱(chēng)的拋物線,得y=-x2的在區(qū)間(0,+∞)上為減函數(shù),得D項(xiàng)不符合題意.再根據(jù)函數(shù)單調(diào)性與奇偶性的定義,可得出只有C項(xiàng)符合題意.
解答:解:對(duì)于A,因?yàn)楹瘮?shù)y=x-1=
1
x
,在區(qū)間(0,+∞)上是減函數(shù)
不滿足在區(qū)間(0,+∞)上單調(diào)遞增,故A不符合題意;
對(duì)于B,函數(shù)y=log2x的定義域?yàn)椋?,+∞),不關(guān)于原點(diǎn)對(duì)稱(chēng)
故函數(shù)y=log2x是非奇非偶函數(shù),故B不符合題意;
對(duì)于C,因?yàn)楹瘮?shù)y=|x|的定義域?yàn)镽,且滿足f(-x)=f(x),
所以函數(shù)y=|x|是偶函數(shù),
而且當(dāng)x∈(0,+∞)時(shí)y=|x|=x,是單調(diào)遞增的函數(shù),故C符合題意;
對(duì)于D,因?yàn)楹瘮?shù)y=-x2的圖象是開(kāi)口向下的拋物線,關(guān)于直線x=0對(duì)稱(chēng)
所以函數(shù)y=-x2的在區(qū)間(0,+∞)上為減函數(shù),故D不符合題意
故選:C
點(diǎn)評(píng):本題給出幾個(gè)基本初等函數(shù),要求我們找出其中的偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù),著重考查了基本初等函數(shù)的單調(diào)性與奇偶性等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知等差數(shù)列{an},滿足a3+a9=8,則此數(shù)列的前11項(xiàng)的和S11=( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)某市電視臺(tái)為了宣傳舉辦問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了x•46%=230人,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) 分組 回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組 [15,25) 5 0.5
第2組 [25,35) a 0.9
第3組 [35,45) 27 x
第4組 [45,55) B 0.36
第5組 [55,65) 3 y
(Ⅰ)分別求出a,b,x,y的值;
(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知函數(shù)f(x)=Asin(4x+φ)(A>0,0<φ<π)在x=
π
16
時(shí)取得最大值2.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若α∈[-
π
2
,0]
,f(
1
4
α+
π
16
)=
6
5
,求sin(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)(坐標(biāo)系與參數(shù)方程選做題) 
已知直線l1=
x=1+3t
y=2-4t
(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,又點(diǎn)A(1,2),則|AB|=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)an
(3)設(shè)數(shù)列{bn}滿足b1=
1
2
,bn+1=
1
ak
b
2
n
+bn
,求證:當(dāng)n≤k時(shí)有bn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案