已知三棱柱的側棱長和底面邊長均為2,在底面ABC內的射影O為底面△ABC的中心,如圖所示:

(1)聯(lián)結,求異面直線所成角的大;
(2)聯(lián)結、,求三棱錐C1-BCA1的體積.
(1);(2)

試題分析:(1)要求異面直線所成的角,必須按照定義作出這個角,即把異面直線平移為相交直線,求相交直線所夾的銳角或直角,當然我們一般是過異面直線中的某一條上一點作另一條直線的平行線,同時要借助已知圖形中的平行關系尋找平行線,以方便解題.本題是三棱柱,顯然有,因此只要在中求即可;(2)求三棱錐的體積,一般用公式,即底面面積乘以高再除以3,但本題中由于三棱錐的高不容易找,而這個三棱錐在三棱柱中,因此我們可借助三棱柱來求棱錐的體積,利用棱錐體積的公式,可知這個三棱柱被分成三個體積相等的三棱錐,,因此我們只要求三棱柱的體積即可.
試題解析:(1) 聯(lián)結,并延長與交于點,則邊上的中線.
是正的中心,且平面,
.∴


∴異面直線所成的角為
即四邊形為正方形.
∴異面直線所成角的大小為
(2)∵三棱柱的所有棱長都為2,
 ∴可求算得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是邊長為2的正三角形,若平面,平面平面,,且

(Ⅰ)求證://平面;
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是圓的直徑,垂直于圓所在的平面,是圓上的點.

(1)求證:平面平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在幾何體中,平面,是等腰直角三角形,,且,點的中點.

(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設l,m是兩條不同的直線,α是一個平面,有下列四個命題:
①若l⊥α,m?α,則l⊥m;②若l⊥α,l∥m,則m⊥α;
③若l∥α,m?α,則l∥m;④若l∥α,m∥α,則l∥m.
則其中正確命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正四面體PABC中,D,E,F分別是AB,BC,CA的中點,下面四個結論中不成立的(  ).
A.BC∥平面PDFB.DF⊥平面PAE
C.平面PDF⊥平面ABCD.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體中,,點的中點,點上,若,則線段的長度等于______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體中,是棱的中點,是側面內的動點,且∥平面,記與平面所成的角為,下列說法錯誤的是(   )
A.點的軌跡是一條線段B.不可能平行
C.是異面直線D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱錐A-BCD中,.給出下列命題:
① 分別作△BAD和△CAD的邊AD上的高,則這兩條高所在直線異面;
② 分別作△BAD和△CAD的邊AD上的高,則這兩條高相等;
;

其中正確的命題有__________________,

查看答案和解析>>

同步練習冊答案