【題目】武漢有九省通衢之稱,也稱為江城,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.

1)為了解·勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:

現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;

2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3型游船供游客乘坐觀光.2010201910年間的數(shù)據(jù)資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數(shù)據(jù)分成3個區(qū)間整理得表:

勞動節(jié)當日客流量

頻數(shù)(年)

2

4

4

以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.

該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:

勞動節(jié)當日客流量

型游船最多使用量

1

2

3

若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入?yún)s不被使用,則游船中心當日虧損0.5萬元.(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數(shù)學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?

【答案】(1);(2)投入3型游船使其當日獲得的總利潤最大

【解析】

1)首先計算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計算公式,計算出.

2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.

1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4.

可得.

2)①當投入1型游船時,因客流量總大于1,則(萬元).

②當投入2型游船時,

,則,此時;

,則,此時

此時的分布列如下表:

2.5

6

此時(萬元).

③當投入3型游船時,

,則,此時;

,則,此時;

,則,此時

此時的分布列如下表:

2

5.5

9

此時(萬元).

由于,則該游船中心在2020年勞動節(jié)當日應投入3型游船使其當日獲得的總利潤最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程的測試,F(xiàn)對測試數(shù)據(jù)進行分析,得到如圖所示的頻率分布直方圖:

1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).

2)根據(jù)大量的汽車測試數(shù)據(jù),可以認為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計算第(1)問中樣本標準差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標準差作為的估計值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從)若擲出反面遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱中,分別是的中點,,

1)證明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學生考試時的原始卷面分數(shù),由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結(jié)果,得到如下圖表:

針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )

A. 獲得A等級的人數(shù)減少了B. 獲得B等級的人數(shù)增加了1.5倍

C. 獲得D等級的人數(shù)減少了一半D. 獲得E等級的人數(shù)相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為定義在上的偶函數(shù),當時,.

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個零點:求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中, .

(1),求的大。

(2)設(shè)△BCD的面積為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知的頂點,邊上中線所在直線方程為,邊上的高所在直線方程為,求:

1)頂點的坐標;

2)求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當,

①求函數(shù)在點處的切線方程;

②比較的大小;

2)當時,若對時,,且有唯一零點,證明:

查看答案和解析>>

同步練習冊答案