設定函數(shù) (>0),且方程的兩個根分別為1,4。
(Ⅰ)當=3且曲線過原點時,求的解析式;
(Ⅱ)若在無極值點,求a的取值范圍。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,.
(1)若在存在極值,求的取值范圍;
(2)若,問是否存在與曲線和都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中
(1)若曲線在點處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實數(shù)p的取值范圍;
(3)設函數(shù),若在[1,e]上至少存在一點,使得成立,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
函數(shù);
(1)若在處取極值,求的值;
(2)設直線和將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應的的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當時,求曲線在處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個極大值和一個極小值,且極大值與極小值的積為,求的
值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com